Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Proc Natl Acad Sci U S A ; 121(17): e2307220121, 2024 Apr 23.
Artigo em Inglês | MEDLINE | ID: mdl-38621138

RESUMO

The expansion of the oil palm industry in Indonesia has improved livelihoods in rural communities, but comes at the cost of biodiversity and ecosystem degradation. Here, we investigated ways to balance ecological and economic outcomes of oil palm cultivation. We compared a wide range of production systems, including smallholder plantations, industrialized company estates, estates with improved agronomic management, and estates with native tree enrichment. Across all management types, we assessed multiple indicators of biodiversity, ecosystem functions, management, and landscape structure to identify factors that facilitate economic-ecological win-wins, using palm yields as measure of economic performance. Although, we found that yields in industrialized estates were, on average, twice as high as those in smallholder plantations, ecological indicators displayed substantial variability across systems, regardless of yield variations, highlighting potential for economic-ecological win-wins. Reducing management intensity (e.g., mechanical weeding instead of herbicide application) did not lower yields but improved ecological outcomes at moderate costs, making it a potential measure for balancing economic and ecological demands. Additionally, maintaining forest cover in the landscape generally enhanced local biodiversity and ecosystem functioning within plantations. Enriching plantations with native trees is also a promising strategy to increase ecological value without reducing productivity. Overall, we recommend closing yield gaps in smallholder cultivation through careful intensification, whereas conventional plantations could reduce management intensity without sacrificing yield. Our study highlights various pathways to reconcile the economics and ecology of palm oil production and identifies management practices for a more sustainable future of oil palm cultivation.


Assuntos
Arecaceae , Óleos Industriais , Ecossistema , Florestas , Biodiversidade , Agricultura , Árvores , Óleo de Palmeira , Conservação dos Recursos Naturais
2.
Appl Environ Microbiol ; 90(3): e0127823, 2024 Mar 20.
Artigo em Inglês | MEDLINE | ID: mdl-38334406

RESUMO

Clostridioides difficile represents a major burden to public health. As a well-known nosocomial pathogen whose occurrence is highly associated with antibiotic treatment, most examined C. difficile strains originated from clinical specimen and were isolated under selective conditions employing antibiotics. This suggests a significant bias among analyzed C. difficile strains, which impedes a holistic view on this pathogen. In order to support extensive isolation of C. difficile strains from environmental samples, we designed a detection PCR that targets the hpdBCA-operon and thereby identifies low abundances of C. difficile in environmental samples. This operon encodes the 4-hydroxyphenylacetate decarboxylase, which catalyzes the production of the antimicrobial compound para-cresol. Amplicon-based analyses of diverse environmental samples demonstrated that the designed PCR is highly specific for C. difficile and successfully detected C. difficile despite its absence in general 16S rRNA gene-based detection strategies. Further analyses revealed the potential of the hpdBCA detection PCR sequence for initial phylogenetic classification, which allows assessment of C. difficile diversity in environmental samples via amplicon sequencing. Our findings furthermore showed that C. difficile strains isolated under antibiotic treatment from environmental samples were originally dominated by other strains according to PCR amplicon results. This provided evidence for selective cultivation of under-represented but antibiotic-resistant isolates. Thereby, we revealed a substantial bias in C. difficile isolation and research.IMPORTANCEClostridioides difficile is a main cause of diarrheic infections after antibiotic treatment with serious morbidity and mortality worldwide. Research on this pathogen and its virulence has focused on bacterial isolation from clinical specimens under antibiotic treatment, which implies a substantial bias in isolated strains. Comprehensive studies, however, require an unbiased strain collection, which is accomplished by isolation of C. difficile from diverse environmental samples and avoidance of antibiotic-based enrichment strategies. Thus, isolation can significantly benefit from our C. difficile-specific detection PCR, which rapidly verifies C. difficile presence in environmental samples and further allows estimation of the C. difficile diversity by using next-generation sequencing.


Assuntos
Clostridioides difficile , Infecções por Clostridium , DNA Ambiental , Humanos , Clostridioides , RNA Ribossômico 16S/genética , Filogenia , Antibacterianos/farmacologia , Reação em Cadeia da Polimerase , Infecções por Clostridium/microbiologia
3.
Nature ; 618(7964): 316-321, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-37225981

RESUMO

In the United Nations Decade on Ecosystem Restoration1, large knowledge gaps persist on how to increase biodiversity and ecosystem functioning in cash crop-dominated tropical landscapes2. Here, we present findings from a large-scale, 5-year ecosystem restoration experiment in an oil palm landscape enriched with 52 tree islands, encompassing assessments of ten indicators of biodiversity and 19 indicators of ecosystem functioning. Overall, indicators of biodiversity and ecosystem functioning, as well as multidiversity and ecosystem multifunctionality, were higher in tree islands compared to conventionally managed oil palm. Larger tree islands led to larger gains in multidiversity through changes in vegetation structure. Furthermore, tree enrichment did not decrease landscape-scale oil palm yield. Our results demonstrate that enriching oil palm-dominated landscapes with tree islands is a promising ecological restoration strategy, yet should not replace the protection of remaining forests.


Assuntos
Biodiversidade , Produtos Agrícolas , Recuperação e Remediação Ambiental , Óleo de Palmeira , Árvores , Florestas , Óleo de Palmeira/provisão & distribuição , Árvores/fisiologia , Agricultura/métodos , Nações Unidas , Clima Tropical , Produtos Agrícolas/provisão & distribuição , Recuperação e Remediação Ambiental/métodos
4.
Appl Environ Microbiol ; 88(7): e0241921, 2022 04 12.
Artigo em Inglês | MEDLINE | ID: mdl-35311509

RESUMO

Butyrate is produced by chemical synthesis based on crude oil, produced by microbial fermentation, or extracted from animal fats (M. Dwidar, J.-Y. Park, R. J. Mitchell, and B.-I. Sang, The Scientific World Journal, 2012:471417, 2012, https://doi.org/10.1100/2012/471417). Butyrate production by anaerobic bacteria is highly favorable since waste or sustainable resources can be used as the substrates. For this purpose, the native hyper-butanol producer Clostridium saccharoperbutylacetonicum N1-4(HMT) was used as a chassis strain due to its broad substrate spectrum. BLASTp analysis of the predicted proteome of C. saccharoperbutylacetonicum N1-4(HMT) resulted in the identification of gene products potentially involved in acetone-butanol-ethanol (ABE) fermentation. Their participation in ABE fermentation was either confirmed or disproven by the parallel production of acids or solvents and the respective transcript levels obtained by transcriptome analysis of this strain. The genes encoding phosphotransacetylase (pta) and butyraldehyde dehydrogenase (bld) were deleted to reduce acetate and alcohol formation. The genes located in the butyryl-CoA synthesis (bcs) operon encoding crotonase, butyryl-CoA dehydrogenase with electron-transferring protein subunits α and ß, and 3-hydroxybutyryl-CoA dehydrogenase were overexpressed to channel the flux further towards butyrate formation. Thereby, the native hyper-butanol producer C. saccharoperbutylacetonicum N1-4(HMT) was converted into the hyper-butyrate producer C. saccharoperbutylacetonicum ΔbldΔpta [pMTL83151_BCS_PbgaL]. The transcription pattern following deletion and overexpression was characterized by a second transcriptomic study, revealing partial compensation for the deletion. Furthermore, this strain was characterized in pH-controlled fermentations with either glucose or Excello, a substrate yielded from spruce biomass. Butyrate was the main product, with maximum butyrate concentrations of 11.7 g·L-1 and 14.3 g·L-1, respectively. Minimal amounts of by-products were detected. IMPORTANCE Platform chemicals such as butyrate are usually produced chemically from crude oil, resulting in the carry-over of harmful compounds. The selective production of butyrate using sustainable resources or waste without harmful by-products can be achieved by bacteria such as clostridia. The hyper-butanol producer Clostridium saccharoperbutylacetonicum N1-4(HMT) was converted into a hyper-butyrate producer. Butyrate production with very small amounts of by-products was established with glucose and the sustainable lignocellulosic sugar substrate Excello extracted from spruce biomass by the biorefinery Borregaard (Sarpsborg, Norway).


Assuntos
Butiratos , Petróleo , 1-Butanol/metabolismo , Acetona/metabolismo , Butanóis/metabolismo , Butiratos/metabolismo , Clostridium/genética , Clostridium/metabolismo , Etanol/metabolismo , Fermentação , Glucose/metabolismo , Lignina , Petróleo/metabolismo , Açúcares/metabolismo
5.
Chemosphere ; 289: 133143, 2022 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-34864011

RESUMO

The slow rate of natural attenuation of organic pollutants, together with unwanted environmental impacts of traditional remediation strategies, has necessitated the exploration of plant-microbe systems for enhanced bioremediation applications. The identification of microorganisms capable of promoting rhizoremediation through both plant growth-promoting and hydrocarbon-degrading processes is crucial to the success and adoption of plant-based remediation techniques. In this study, through successive enrichments of soil samples from a historic oil-contaminated site in Wietze, Germany, we isolated a plant growth-promoting and hydrocarbon-degrading bacterial consortium dominated by Alphaproteobacteria. In microcosm experiments involving Medicago sativa L. and the isolated bacterial consortium, we examined the ability of the consortium to enhance rhizoremediation of petroleum hydrocarbons. The inoculation of M. sativa with the consortium resulted in 66% increase in plant biomass, and achieved a 91% reduction in diesel fuel hydrocarbon concentrations in the soil within 60 days. Metagenome analysis led to the identification of genes and taxa putatively involved in these processes. The majority of the coding DNA sequences associated with plant growth promotion and hydrocarbon degradation in this study were affiliated to Acidocella aminolytica and Acidobacterium capsulatum indicating their potential for biotechnological applications in the rhizoremediation of sites contaminated by petroleum-derived organic pollutants.


Assuntos
Petróleo , Poluentes do Solo , Biodegradação Ambiental , Hidrocarbonetos , Solo , Microbiologia do Solo , Poluentes do Solo/análise
6.
Int J Mol Sci ; 22(10)2021 May 13.
Artigo em Inglês | MEDLINE | ID: mdl-34068175

RESUMO

Low phosphorus (P) availability is a major limiting factor for potatoes. P fertilizer is applied to enhance P availability; however, it may become toxic when plants accumulate at high concentrations. Therefore, it is necessary to gain more knowledge of the morphological and biochemical processes associated with P deficiency and toxicity for potatoes, as well as to explore an alternative approach to ameliorate the P deficiency condition. A comprehensive study was conducted (I) to assess plant morphology, mineral allocation, and metabolites of potatoes in response to P deficiency and toxicity; and (II) to evaluate the potency of plant growth-promoting rhizobacteria (PGPR) in improving plant biomass, P uptake, and metabolites at low P levels. The results revealed a reduction in plant height and biomass by 60-80% under P deficiency compared to P optimum. P deficiency and toxicity conditions also altered the mineral concentration and allocation in plants due to nutrient imbalance. The stress induced by both P deficiency and toxicity was evident from an accumulation of proline and total free amino acids in young leaves and roots. Furthermore, root metabolite profiling revealed that P deficiency reduced sugars by 50-80% and organic acids by 20-90%, but increased amino acids by 1.5-14.8 times. However, the effect of P toxicity on metabolic changes in roots was less pronounced. Under P deficiency, PGPR significantly improved the root and shoot biomass, total root length, and root surface area by 32-45%. This finding suggests the potency of PGPR inoculation to increase potato plant tolerance under P deficiency.


Assuntos
Fósforo/metabolismo , Desenvolvimento Vegetal , Rhizobiaceae/fisiologia , Solanum tuberosum/anatomia & histologia , Solanum tuberosum/metabolismo , Estresse Fisiológico , Folhas de Planta/anatomia & histologia , Folhas de Planta/crescimento & desenvolvimento , Folhas de Planta/metabolismo , Folhas de Planta/microbiologia , Raízes de Plantas/anatomia & histologia , Raízes de Plantas/crescimento & desenvolvimento , Raízes de Plantas/metabolismo , Raízes de Plantas/microbiologia , Solanum tuberosum/crescimento & desenvolvimento , Solanum tuberosum/microbiologia
7.
mBio ; 8(4)2017 07 05.
Artigo em Inglês | MEDLINE | ID: mdl-28679749

RESUMO

Potassium is the most abundant metal ion in every living cell. This ion is essential due to its requirement for the activity of the ribosome and many enzymes but also because of its role in buffering the negative charge of nucleic acids. As the external concentrations of potassium are usually low, efficient uptake and intracellular enrichment of the ion is necessary. The Gram-positive bacterium Bacillus subtilis possesses three transporters for potassium, KtrAB, KtrCD, and the recently discovered KimA. In the absence of the high-affinity transporters KtrAB and KimA, the bacteria were unable to grow at low potassium concentrations. However, we observed the appearance of suppressor mutants that were able to overcome the potassium limitation. All these suppressor mutations affected amino acid metabolism, particularly arginine biosynthesis. In the mutants, the intracellular levels of ornithine, citrulline, and arginine were strongly increased, suggesting that these amino acids can partially substitute for potassium. This was confirmed by the observation that the supplementation with positively charged amino acids allows growth of B. subtilis even at the extreme potassium limitation that the bacteria experience if no potassium is added to the medium. In addition, a second class of suppressor mutations allowed growth at extreme potassium limitation. These mutations result in increased expression of KtrAB, the potassium transporter with the highest affinity and therefore allow the acquisition and accumulation of the smallest amounts of potassium ions from the environment.IMPORTANCE Potassium is essential for every living cell as it is required for the activity for many enzymes and for maintaining the intracellular pH by buffering the negative charge of the nucleic acids. We have studied the adaptation of the soil bacterium Bacillus subtilis to life at low potassium concentrations. If the major high-affinity transporters are missing, the bacteria are unable to grow unless they acquire mutations that result in the accumulation of positively charged amino acids such as ornithine, citrulline, and arginine. Supplementation of the medium with these amino acids rescued growth even in the absence of externally added potassium. Moreover, these growth conditions, which the bacteria experience as an extreme potassium limitation, can be overcome by the acquisition of mutations that result in increased expression of the high-affinity potassium transporter KtrAB. Our results indicate that positively charged amino acids can partially take over the function of potassium.


Assuntos
Adaptação Fisiológica , Bacillus subtilis/fisiologia , Potássio/análise , Potássio/farmacologia , Aminoácidos/metabolismo , Arginina/biossíntese , Bacillus subtilis/genética , Bacillus subtilis/crescimento & desenvolvimento , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Fosfatos de Dinucleosídeos/metabolismo , Transporte de Íons , Mutação
8.
Syst Appl Microbiol ; 40(6): 370-382, 2017 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-28641923

RESUMO

Macroalgae harbour specific microbial communities on their surface that have functions related to host health and defence. In this study, the bacterial biofilm of the marine brown alga Fucus spiralis was investigated using 16S rRNA gene amplicon-based analysis and isolation of bacteria. Rhodobacteraceae (Alphaproteobacteria) were the predominant family constituting 23% of the epibacterial community. At the genus level, Sulfitobacter, Loktanella, Octadecabacter and a previously undescribed cluster were most abundant, and together they comprised 89% of the Rhodobacteraceae. Supported by a specific PCR approach, 23 different Rhodobacteraceae-affiliated strains were isolated from the surface of F. spiralis, which belonged to 12 established and three new genera. For seven strains, closely related sequences were detected in the 16S rRNA gene dataset. Growth experiments with substrates known to be produced by Fucus spp. showed that all of them were consumed by at least three strains, and vitamin B12 was produced by 70% of the isolates. Since growth of F. spiralis depends on B12 supplementation, bacteria may provide the alga with this vitamin. Most strains produced siderophores, which can enhance algal growth under iron-deficient conditions. Inhibiting properties against other bacteria were only observed when F. spiralis material was present in the medium. Thus, the physiological properties of the isolates indicated adaption to an epiphytic lifestyle.


Assuntos
Adaptação Fisiológica , Fucus/microbiologia , Rhodobacteraceae/classificação , Rhodobacteraceae/fisiologia , Simbiose , Biodiversidade , DNA Bacteriano , Viabilidade Microbiana , Filogenia , RNA Ribossômico 16S/genética , Rhodobacteraceae/isolamento & purificação , Análise de Sequência de DNA
9.
Environ Microbiol ; 19(6): 2320-2333, 2017 06.
Artigo em Inglês | MEDLINE | ID: mdl-28276126

RESUMO

Mobile genomic islands distribute functional traits between microbes and habitats, yet it remains unclear how their proteins adapt to new environments. Here we used a comparative phylogenomic and proteomic approach to show that the marine bacterium Pseudoalteromonas haloplanktis ANT/505 acquired a genomic island with a functional pathway for pectin catabolism. Bioinformatics and biochemical experiments revealed that this pathway encodes a series of carbohydrate-active enzymes including two multi-modular pectate lyases, PelA and PelB. PelA is a large enzyme with a polysaccharide lyase family 1 (PL1) domain and a carbohydrate esterase family 8 domain, and PelB contains a PL1 domain and two carbohydrate-binding domains of family 13. Comparative phylogenomic analyses indicate that the pathway was most likely acquired from terrestrial microbes, yet we observed multi-modular orthologues only in marine bacteria. Proteomic experiments showed that P. haloplanktis ANT/505 secretes both pectate lyases into the environment in the presence of pectin. These multi-modular enzymes may therefore represent a marine innovation that enhances physical interaction with pectins to reduce loss of substrate and enzymes by diffusion. Our results revealed that marine bacteria can catabolize pectin, and highlight enzyme fusion as a potential adaptation that may facilitate microbial consumption of polymeric substrates in aquatic environments.


Assuntos
Adaptação Fisiológica/genética , Gammaproteobacteria/metabolismo , Pectinas/metabolismo , Polissacarídeo-Liases/genética , Sequência de Aminoácidos , Gammaproteobacteria/genética , Transferência Genética Horizontal/genética , Sequências Repetitivas Dispersas/genética , Proteômica
10.
Sci Rep ; 7: 40914, 2017 01 19.
Artigo em Inglês | MEDLINE | ID: mdl-28102323

RESUMO

Endophytic bacteria are critical for plant growth and health. However, compositional and functional responses of bacterial endophyte communities towards agricultural practices are still poorly understood. Hence, we analyzed the influence of fertilizer application and mowing frequency on bacterial endophytes in three agriculturally important grass species. For this purpose, we examined bacterial endophytic communities in aerial plant parts of Dactylis glomerata L., Festuca rubra L., and Lolium perenne L. by pyrotag sequencing of bacterial 16S rRNA genes over two consecutive years. Although management regimes influenced endophyte communities, observed responses were grass species-specific. This might be attributed to several bacteria specifically associated with a single grass species. We further predicted functional profiles from obtained 16S rRNA data. These profiles revealed that predicted abundances of genes involved in plant growth promotion or nitrogen metabolism differed between grass species and between management regimes. Moreover, structural and functional community patterns showed no correlation to each other indicating that plant species-specific selection of endophytes is driven by functional rather than phylogenetic traits. The unique combination of 16S rRNA data and functional profiles provided a holistic picture of compositional and functional responses of bacterial endophytes in agricultural relevant grass species towards management practices.


Assuntos
Bactérias/isolamento & purificação , Poaceae/microbiologia , Agricultura , Bactérias/genética , Nitrogênio/metabolismo , Componentes Aéreos da Planta/microbiologia , Desenvolvimento Vegetal , Poaceae/crescimento & desenvolvimento , RNA Ribossômico 16S/genética , RNA Ribossômico 16S/metabolismo , Especificidade da Espécie , Simbiose
11.
Mar Drugs ; 14(1): 21, 2016 Jan 20.
Artigo em Inglês | MEDLINE | ID: mdl-26805858

RESUMO

In this study, the influence of halide ions on [7.7]paracyclophane biosynthesis in the cyanobacterium Nostoc sp. CAVN2 was investigated. In contrast to KI and KF, supplementation of the culture medium with KCl or KBr resulted not only in an increase of growth but also in an up-regulation of carbamidocyclophane production. LC-MS analysis indicated the presence of chlorinated, brominated, but also non-halogenated derivatives. In addition to 22 known cylindrocyclophanes and carbamidocyclophanes, 27 putative congeners have been detected. Nine compounds, carbamidocyclophanes M-U, were isolated, and their structural elucidation by 1D and 2D NMR experiments in combination with HRMS and ECD analysis revealed that they are brominated analogues of chlorinated carbamidocyclophanes. Quantification of the carbamidocyclophanes showed that chloride is the preferably utilized halide, but incorporation is reduced in the presence of bromide. Evaluation of the antibacterial activity of 30 [7.7]paracyclophanes and related derivatives against selected pathogenic Gram-positive and Gram-negative bacteria exhibited remarkable effects especially against methicillin- and vancomycin-resistant staphylococci and Mycobacterium tuberculosis. For deeper insights into the mechanisms of biosynthesis, the carbamidocyclophane biosynthetic gene cluster in Nostoc sp. CAVN2 was studied. The gene putatively coding for the carbamoyltransferase has been identified. Based on bioinformatic analyses, a possible biosynthetic assembly is discussed.


Assuntos
Antibacterianos/biossíntese , Cianobactérias/metabolismo , Éteres Cíclicos/metabolismo , Meios de Cultura , Fluoretos/farmacologia , Humanos , Compostos de Potássio/farmacologia , Iodeto de Potássio/farmacologia , Regulação para Cima/efeitos dos fármacos
12.
Environ Microbiol ; 17(10): 3822-31, 2015 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-25753990

RESUMO

The bacterial degradation of polysaccharides is central to marine carbon cycling, but little is known about the bacterial taxa that degrade specific marine polysaccharides. Here, bacterial growth and community dynamics were studied during the degradation of the polysaccharides chitin, alginate and agarose in microcosm experiments at four contrasting locations in the Southern and Atlantic Oceans. At the Southern polar front, chitin-supplemented microcosms were characterized by higher fractions of actively growing cells and a community shift from Alphaproteobacteria to Gammaproteobacteria and Bacteroidetes. At the Antarctic ice shelf, chitin degradation was associated with growth of Bacteroidetes, with 24% higher cell numbers compared with the control. At the Patagonian continental shelf, alginate and agarose degradation covaried with growth of different Alteromonadaceae populations, each with specific temporal growth patterns. At the Mauritanian upwelling, only the alginate hydrolysis product guluronate was consumed, coincident with increasing abundances of Alteromonadaceae and possibly cross-feeding SAR11. 16S rRNA gene amplicon libraries indicated that growth of the Bacteroidetes-affiliated genus Reichenbachiella was stimulated by chitin at all cold and temperate water stations, suggesting comparable ecological roles over wide geographical scales. Overall, the predominance of location-specific patterns showed that bacterial communities from contrasting oceanic biomes have members with different potentials to hydrolyse polysaccharides.


Assuntos
Alphaproteobacteria/metabolismo , Alteromonadaceae/metabolismo , Bacteroidetes/metabolismo , Consórcios Microbianos/fisiologia , Polissacarídeos/metabolismo , Alginatos/metabolismo , Alphaproteobacteria/genética , Alphaproteobacteria/crescimento & desenvolvimento , Alteromonadaceae/genética , Alteromonadaceae/crescimento & desenvolvimento , Regiões Antárticas , Oceano Atlântico , Bacteroidetes/genética , Bacteroidetes/crescimento & desenvolvimento , Quitina/metabolismo , Temperatura Baixa , Ecossistema , Geografia , Ácido Glucurônico/metabolismo , Ácidos Hexurônicos/metabolismo , Oceanos e Mares , RNA Ribossômico 16S/genética
13.
Metab Eng ; 29: 196-207, 2015 May.
Artigo em Inglês | MEDLINE | ID: mdl-25777134

RESUMO

Until now, pyridoxine (PN), the most commonly supplemented B6 vitamer for animals and humans, is chemically synthesized for commercial purposes. Thus, the development of a microbial fermentation process is of great interest for the biotech industry. Recently, we constructed a Bacillus subtilis strain that formed significant amounts of PN via a non-native deoxyxylulose 5'-phosphate-(DXP)-dependent vitamin B6 pathway. Here we report the optimization of the condensing reaction of this pathway that consists of the 4-hydroxy-l-threonine-phosphate dehydrogenase PdxA, the pyridoxine 5'-phosphate synthase PdxJ and the native DXP synthase, Dxs. To allow feeding of high amounts of 4-hydroxy-threonine (4-HO-Thr) that can be converted to PN by B. subtilis overexpressing PdxA and PdxJ, we first adapted the bacteria to tolerate the antimetabolite 4-HO-Thr. The adapted bacteria produced 28-34mg/l PN from 4-HO-Thr while the wild-type parent produced only 12mg/l PN. Moreover, by expressing different pdxA and pdxJ alleles in the adapted strain we identified a better combination of PdxA and PdxJ enzymes than reported previously, and the resulting strain produced 65mg/l PN. To further enhance productivity mutants were isolated that efficiently take up and convert deoxyxylulose (DX) to DXP, which is incorporated into PN. Although these mutants were very efficient to convert low amount of exogenous DX, at higher DX levels they performed only slightly better. The present study uncovered several enzymes with promiscuous activity and it revealed that host metabolic pathways compete with the heterologous pathway for 4-HO-Thr. Moreover, the study revealed that the B. subtilis genome is quite flexible with respect to adaptive mutations, a property, which is very important for strain engineering.


Assuntos
Antimetabólitos/metabolismo , Bacillus subtilis , Engenharia Metabólica , Piridoxina/biossíntese , Treonina/análogos & derivados , Bacillus subtilis/genética , Bacillus subtilis/metabolismo , Proteínas de Bactérias/biossíntese , Proteínas de Bactérias/genética , Desidrogenases de Carboidrato/biossíntese , Desidrogenases de Carboidrato/genética , Oxirredutases/biossíntese , Oxirredutases/genética , Treonina/biossíntese
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA