Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Métodos Terapêuticos e Terapias MTCI
Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Pharmacol Res Perspect ; 6(6): e00434, 2018 12.
Artigo em Inglês | MEDLINE | ID: mdl-30464842

RESUMO

Although Interleukin-22 (IL-22) is produced by various leukocytes, it preferentially targets cells with epithelial origins. IL-22 exerts essential roles in modulating various tissue epithelial functions, such as innate host defense against extracellular pathogens, barrier integrity, regeneration, and wound healing. Therefore, IL-22 is thought to have therapeutic potential in treating diseases associated with infection, tissue injury or chronic tissue damage. A number of in vitro and in vivo nonclinical studies were conducted to characterize the pharmacological activity and safety parameters of UTTR1147A, an IL-22 recombinant fusion protein that links the human cytokine IL-22 with the Fc portion of a human immunoglobulin. To assess the pharmacological activity of UTTR1147A, STAT3 activation was evaluated in primary hepatocytes isolated from human, cynomolgus monkey, minipig, rat, and mouse after incubation with UTTR1147A. UTTR1147A activated STAT3 in all species evaluated, demonstrating that all were appropriate nonclinical species for toxicology studies. The nonclinical safety profile of UTTR1147A was evaluated in rats, minipigs, and cynomolgus monkeys to establish a safe clinical starting dose for humans in Phase I trials and to support clinical intravenous, subcutaneous and/or topical administration treatment regimen. Results demonstrate the cross-species translatability of the biological response in activating the IL-22 pathway as well as the translatability of findings from in vitro to in vivo systems. UTTR1147A was well tolerated in all species tested and induced the expected pharmacologic effects of epidermal hyperplasia and a transient increase in on-target acute phase proteins. These effects were all considered to be clinically predictable, manageable, monitorable, and reversible.


Assuntos
Hepatócitos/efeitos dos fármacos , Fatores Imunológicos/farmacologia , Interleucinas/toxicidade , Proteínas Recombinantes de Fusão/toxicidade , Animais , Ensaios Clínicos Fase I como Assunto , Avaliação Pré-Clínica de Medicamentos , Feminino , Hepatócitos/metabolismo , Humanos , Interleucinas/administração & dosagem , Macaca fascicularis , Masculino , Camundongos , Cultura Primária de Células , Ratos , Proteínas Recombinantes de Fusão/administração & dosagem , Fator de Transcrição STAT3/metabolismo , Suínos , Porco Miniatura , Interleucina 22
2.
Biochem Pharmacol ; 152: 224-235, 2018 06.
Artigo em Inglês | MEDLINE | ID: mdl-29608910

RESUMO

Interleukin (IL)-22 plays protective roles in infections and in inflammatory diseases that have been linked to its meditation of innate immunity via multiple mechanisms. IL-22 binds specifically to its heterodimeric receptor, which is expressed on a variety of epithelial tissues. UTTR1147A is a recombinant fusion protein that links the human cytokine IL-22 with the Fc portion of human immunoglobulin (Ig) G4. Here, we report extensive in vitro and in vivo nonclinical studies that were conducted to characterize the pharmacological activity of UTTR1147A. The in vitro activity and potency of UTTR1147A were analyzed using primary human hepatocytes and human colonic epithelial cell lines. Assessment of in vivo efficacy was performed in a mouse colitis model and by measuring relevant pharmacodynamic biomarkers, including antimicrobial peptides REG3A/ß, serum amyloid protein A (SAA) and lipopolysaccharide binding protein (LBP). The pharmacokinetic and pharmacodynamic characteristics of UTTR1147A were assessed in healthy mice, rats and cynomolgus monkeys. UTTR1147A induced STAT3 activation through binding to IL-22 receptor expressed in primary human hepatocytes and human colon cell lines. In both, activation occurred in a concentration-dependent manner with similar potencies. In the mouse colitis model, murine IL-22Fc- (muIL-22Fc) treated groups at doses of 1.25 µg and above had statistically lower average histologic colitis scores compared to the control treated group. Administration of muIL-22Fc or UTTR1147A was associated with a dose-dependent induction of PD markers REG3ß and SAA in rodents as well as REG3A, SAA and LBP in cynomolgus monkeys. The combined data confirm pharmacological activity of IL-22Fc and support potential regenerative and protective mechanisms in epithelial tissues.


Assuntos
Imunoglobulina G/metabolismo , Interleucinas/metabolismo , Animais , Área Sob a Curva , Linhagem Celular , Colite/induzido quimicamente , Colite/terapia , Citocinas , Feminino , Humanos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Ratos , Ratos Sprague-Dawley , Proteínas Recombinantes , Interleucina 22
3.
Toxicol Pathol ; 40(2): 272-87, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-22222884

RESUMO

A number of therapeutic immunomodulatory biologics, including antibodies, fusion proteins, and recombinant proteins, have been causally linked with serious adverse effects in humans. In nearly all cases, these serious adverse effects have been directly associated with the immunomodulatory biologic's intended pharmacologic activity or exaggerated pharmacology. Examples of immunomodulatory biologics known to cause serious adverse effects in the clinic ranging from immunostimulation and cytokine release syndrome (e.g., TGN1412) to immunosuppression with increased risk of opportunistic infections (e.g., TNF-α antagonists, anti-integrins) are presented. Specific examples of the nonclinical testing strategy used for the clinical risk assessment of these immunomodulatory biologics are discussed, with an emphasis on the clinical relevance and predictivity of the models. Infectious challenge animal models, in particular, were critically evaluated for their utility in evaluating clinical risk assessment versus understanding mechanism of action. The nonclinical safety testing strategy for an immunomodulatory biologic should be custom tailored to interrogate the biology of the immunologic target in order to best assess potential clinical risk. This nonclinical strategy should include mechanistic and efficacy models of pharmacologic activity and immunologic signaling pathways, in vitro immunologic assays such as cytokine release, and immunophenotypic assessment by flow cytometry, immunohistochemistry, and/or immunofluorescence, as appropriate.


Assuntos
Produtos Biológicos/efeitos adversos , Avaliação de Medicamentos/métodos , Fatores Imunológicos/efeitos adversos , Animais , Humanos , Medição de Risco , Yin-Yang
4.
Cancer Cell ; 20(4): 472-86, 2011 Oct 18.
Artigo em Inglês | MEDLINE | ID: mdl-22014573

RESUMO

Extensive crosstalk among ErbB/HER receptors suggests that blocking signaling from more than one family member may be essential to effectively treat cancer and limit drug resistance. We generated a conventional IgG molecule MEHD7945A with dual HER3/EGFR specificity by phage display engineering and used structural and mutational studies to understand how a single antigen recognition surface binds two epitopes with high affinity. As a human IgG1, MEHD7945A exhibited dual action by inhibiting EGFR- and HER3-mediated signaling in vitro and in vivo and the ability to engage immune effector functions. Compared with monospecific anti-HER antibodies, MEHD7945A was more broadly efficacious in multiple tumor models, showing that combined inhibition of EGFR and HER3 with a single antibody is beneficial.


Assuntos
Anticorpos Biespecíficos/uso terapêutico , Antineoplásicos/uso terapêutico , Receptores ErbB/antagonistas & inibidores , Imunoglobulina G/uso terapêutico , Receptor ErbB-3/antagonistas & inibidores , Animais , Anticorpos Biespecíficos/química , Anticorpos Biespecíficos/toxicidade , Anticorpos Monoclonais/efeitos adversos , Anticorpos Monoclonais/uso terapêutico , Anticorpos Monoclonais Humanizados , Especificidade de Anticorpos , Antineoplásicos/química , Antineoplásicos/toxicidade , Sítios de Ligação de Anticorpos , Ligação Competitiva , Cetuximab , Cristalografia por Raios X , Avaliação Pré-Clínica de Medicamentos , Resistencia a Medicamentos Antineoplásicos , Receptores ErbB/química , Receptores ErbB/imunologia , Feminino , Humanos , Imunoglobulina G/efeitos adversos , Imunoglobulina G/química , Sistema de Sinalização das MAP Quinases , Macaca fascicularis , Camundongos , Fosforilação , Proteínas Proto-Oncogênicas c-akt/metabolismo , Receptor ErbB-3/química , Receptor ErbB-3/imunologia , Transdução de Sinais
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA