Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Life Sci ; 253: 117584, 2020 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-32220623

RESUMO

Accumulating recent studies have demonstrated the preventive and therapeutic effects of polyphonic compounds such as quercetin in colorectal cancer. Therefore, we aimed to evaluate the underlying mechanisms for positive effects of quercetin in rats with 1,2-dimethylhydrazine (DMH)- induced colorectal cancer. For this purpose, male Wistar rats were classified as 6 groups, including group 1 without any intervention, group 2 as quercetin received rats (50 mg/kg), groups 3 as DMH received rats (20 mg/kg) group 4-6 DMH and quercetin received rats. DNA damage, DNA repair, the expression levels and activities of enzymic antioxidants, non-enzymic antioxidants, and NRF2/Keap1 signaling were evaluated in colon tissues of all groups. Our results showed significant suppression of DNA damage and induction of DNA repair in DMH + Quercetin groups, particularly in entire-period in comparison to other groups (p < .05). The expression levels and activities of enzymic and non-enzymic antioxidants were increased in DMH + Quercetin groups (p < .05). Lipid and protein peroxidation were significantly suppressed in DMH + Quercetin groups (p < .05). In addition, quercetin also modulated NRF2/Keap1 signaling and its targets, detoxifying enzymes in DMH + Quercetin groups. Our finding demonstrated that quercetin supplementation effectively reversed DMH-mediated oxidative stress and DNA damage through targeting NRF2/Keap1 signaling pathway.


Assuntos
1,2-Dimetilidrazina/metabolismo , Carcinógenos/metabolismo , Neoplasias do Colo/tratamento farmacológico , Fator 2 Relacionado a NF-E2/metabolismo , Quercetina/química , 1,2-Dimetilidrazina/toxicidade , Animais , Antioxidantes/química , Antioxidantes/metabolismo , Antioxidantes/farmacologia , Carcinógenos/química , Carcinógenos/toxicidade , Catalase/metabolismo , Dano ao DNA/efeitos dos fármacos , Proteína 1 Associada a ECH Semelhante a Kelch/metabolismo , Peroxidação de Lipídeos/efeitos dos fármacos , Lipídeos/química , Masculino , Neoplasias Experimentais , Estresse Oxidativo/efeitos dos fármacos , Quercetina/metabolismo , Quercetina/farmacologia , Ratos , Ratos Wistar , Espécies Reativas de Oxigênio , Transdução de Sinais
2.
Pflugers Arch ; 472(2): 169-178, 2020 02.
Artigo em Inglês | MEDLINE | ID: mdl-31624955

RESUMO

Aging-induced progressive decline of molecular and metabolic factors in the myocardium is suggested to be related with heart dysfunction and cardiovascular disease. Therefore, we evaluated the effects of exercise training and L-arginine supplementation on oxidative stress, inflammation, and apoptosis in ventricle of the aging rat heart. Twenty-four 24-month-aged Wistar rats were randomly divided into four groups: the aged control, aged exercise, aged L-arginine (orally administered with 150 mg/kg for 12 weeks), and aged exercise + L-arginine groups. Six 4-month-old rats were also considered the young control. Animals with training program performed exercise on a treadmill 5 days/week for 12 weeks. After 12 weeks, protein levels of Bax, Bcl-2, pro-caspase-3/cleaved caspase-3, cytochrome C, and heat shock protein (HSP)-70 were assessed. Tissue contents of total anti-oxidant capacity, superoxide dismutase, catalase, and levels of tumor necrosis factor alpha (TNF-α), interleukin (IL)-1ß, and IL-6 were analyzed. Histological and fibrotic changes were also evaluated. Treadmill exercise and L-arginine supplementation significantly alleviated aging-induced apoptosis with enhancing HSP-70 expression, increasing anti-oxidant enzyme activity, and suppressing inflammatory markers in the cardiac myocytes. Potent attenuation in apoptosis, inflammation, and oxidative stress was indicated in the rats with the combination of L-arginine supplementation and exercise program in comparison with each group (p < 0.05). In addition, fibrosis percentage and collagen accumulation were significantly lower in the rats with the combination treatment of L-arginine and exercise (p < 0.05). Treadmill exercise and L-arginine supplementation provided protection against age-induced increase in the myocyte loss and formation of fibrosis in the ventricle through potent suppression of oxidative stress, inflammations, and apoptosis pathways.


Assuntos
Envelhecimento/fisiologia , Apoptose , Arginina/farmacologia , Coração/fisiologia , Estresse Oxidativo , Condicionamento Físico Animal/métodos , Envelhecimento/efeitos dos fármacos , Animais , Arginina/administração & dosagem , Fibrose , Proteínas de Choque Térmico HSP70/genética , Proteínas de Choque Térmico HSP70/metabolismo , Coração/efeitos dos fármacos , Coração/crescimento & desenvolvimento , Interleucinas/genética , Interleucinas/metabolismo , Masculino , Miocárdio/metabolismo , Miocárdio/patologia , Ratos , Ratos Wistar , Fator de Necrose Tumoral alfa/genética , Fator de Necrose Tumoral alfa/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA