RESUMO
Phosphodiesterase 4 (PDE4), is a hydrolytic enzyme, is proposed as a promising target in asthma and chronic obstructive pulmonary disease. PDE4B selective inhibitors are desirable to reduce the dose limiting adverse effect associated with non-selective PDE4B inhibitors. To achieve this goal, ligand based pharmacophore modeling and molecular docking approach is employed. Pharmacophore hypotheses for PDE4B and PDE4D are generated using HypoGen algorithm. The best PDE4B pharmacophore hypothesis (Hypo1_PDE4B) consist of one hydrogen-bond acceptor and two ring aromatic features, whereas PDE4D pharmacophore hypothesis (Hypo1_PDE4D) consist of one hydrogen-bond acceptor, one hydrophobic aliphatic, and two ring aromatic features. The validated pharmacophore hypotheses are used in virtual screening to identify selective PDE4B inhibitors. The hits were screened for their estimated activity, FitValue, and quantitative estimation of drug likeness. After molecular docking analysis, ten hits were purchased for in vitro analysis. Out of these, six hits have shown potent and selective inhibitory activity against PDE4B with IC50 values ranging from 2 to 378nM.
Assuntos
Nucleotídeo Cíclico Fosfodiesterase do Tipo 4/química , Avaliação Pré-Clínica de Medicamentos , Inibidores de Fosfodiesterase/análise , Inibidores de Fosfodiesterase/farmacologia , Interface Usuário-Computador , Algoritmos , Humanos , Concentração Inibidora 50 , Modelos Moleculares , Simulação de Acoplamento Molecular , Inibidores de Fosfodiesterase/química , Reprodutibilidade dos Testes , Relação Estrutura-AtividadeRESUMO
Peroxisome proliferator activated receptors-α (PPAR-α) control the expression of several genes involved in diseases like diabetes, hyperlipidaemia, and inflammatory disorders. Herein, we report the biological evaluation of recently identified hits from pharmacophore based virtual screening. The most potent hits, ZINC17167211, ZINC06472206 and ZINC08438472 showed EC50 values of 0.16, 1.1 and 12.1nM in PPAR-α agonist assay, respectively. Further, comparative docking and molecular dynamics analysis of selective PPAR-α agonists revealed that Thr279, Ala333, Lys358 and Met325 residues play an important role in the selective PPAR-α agonistic activity. The insights from docking and molecular dynamic studies will serve as a guideline for the development of potent and selective PPAR-α agonists.