Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Med Oncol ; 40(11): 320, 2023 Oct 05.
Artigo em Inglês | MEDLINE | ID: mdl-37796360

RESUMO

Colorectal cancer (CRC) has the second highest incidence and fatality rates of any malignancy, at 10.2 and 9.2%, respectively. Plants and plants-based products for thousands of years have been utilized to treat cancer along with other associated health issues. Alkaloids are a valuable class of chemical compounds with great potential as new medicine possibilities. Piper longum Linn contains various types of alkaloids. In this research, the ethanolic root extract of P. longum (EREPL) is the subject of study based on network pharmacology. Two alkaloids were chosen from the gas chromatography mass spectrometry (GC-MS) analysis. However, only piperlonguminine received preference because it adhered to Lipinski's rule and depicted no toxicity. Web tools which are available online, like, Swiss ADME, pkCSMand ProTox-II were used to evaluate the pharmacokinetics and physiochemical properties of piperlonguminine. The database that SwissTargetPrediction and TCMSP maintain contains the targets for piperlonguminine. Using DisGeNET, GeneCards and Open Targets Platform databases, we were able to identify targets of CRC. The top four hub genes identified by Cytoscape are SRC, MTOR, EZH2, and MAPK3. The participation of hub genes in colorectal cancer-related pathways was examined using the Kyoto Encyclopaedia of Genes and Genomes (KEGG) database. The colorectal cancer pathway, the ErbB signaling pathway and the mTOR signaling pathway emerged to be important. Our findings show that the hub genes are involved in the aforementioned pathways for tumor growth, which calls for their downregulation. Additionally, piperlonguminine has the potential to become a successful medicine in the future for the treatment of CRC.


Assuntos
Alcaloides , Neoplasias Colorretais , Medicamentos de Ervas Chinesas , Piper , Humanos , Piper/química , Farmacologia em Rede , Extratos Vegetais/farmacologia , Extratos Vegetais/química , Serina-Treonina Quinases TOR , Neoplasias Colorretais/tratamento farmacológico , Simulação de Acoplamento Molecular
2.
Med Oncol ; 40(5): 133, 2023 Apr 03.
Artigo em Inglês | MEDLINE | ID: mdl-37010624

RESUMO

In pancreatic cancer, healthy cells in the pancreas begin to malfunction and proliferate out of control. According to our conventional knowledge, many plants contain several novel bioactive compounds, having pharmaceutical applications for the treatment of disease like pancreatic cancer. The methanolic fraction of fruit extract of Trema orientalis L. (MFETO) was analysed through HRMS. In this in silico study, pharmacokinetic and physicochemical properties of the identified flavonoids from MFETO were screened out by ADMET analysis. Kaempferol and catechin followed Lipinski rules and showed no toxicity in Protox II. Targets of these compounds were taken from SwissTarget prediction and TCMSP whilst targets for pancreatic cancer were taken from GeneCards and DisGeNET databases. The protein-protein interaction (PPI) network of common genes was generated through STRING and then exported to the Cytoscape to get top 5 hub genes (AKT1, SRC, EGFR, TNF, and CASP3). The interaction between compounds and hub genes was analysed using molecular docking, and high binding affinity between them can be visualised by Biovia discovery studio visualizer. Our study shows that, five hub genes related to pancreatic cancer play an important role in tumour growth induction, invasion and migration. Kaempferol effectively check cell migration by inhibiting ERK1/2, EGFR-related SRC, and AKT pathways by scavenging ROS whilst catechin inhibited TNFα-induced activation and cell cycle arrest at G1 and G2/M phases by induction of apoptosis of malignant cells. Kaempferol and catechin containing MFETO can be used for formulation of potent drugs for pancreatic cancer treatment in future.


Assuntos
Catequina , Medicamentos de Ervas Chinesas , Neoplasias , Trema , Humanos , Catequina/farmacologia , Quempferóis/farmacologia , Simulação de Acoplamento Molecular , Farmacologia em Rede , Receptores ErbB , Neoplasias Pancreáticas
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA