Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros

Métodos Terapêuticos e Terapias MTCI
Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
J Antimicrob Chemother ; 77(12): 3349-3357, 2022 11 28.
Artigo em Inglês | MEDLINE | ID: mdl-36177766

RESUMO

BACKGROUND: Annual mortality from neonatal sepsis is an estimated 430 000-680 000 infants globally, most of which occur in low- and middle-income countries (LMICs). The WHO currently recommends a narrow-spectrum ß-lactam (e.g. ampicillin) and gentamicin as first-line empirical therapy. However, available epidemiological data demonstrate high rates of resistance to both agents. Alternative empirical regimens are needed. Flomoxef and amikacin are two off-patent antibiotics with potential for use in this setting. OBJECTIVES: To assess the pharmacodynamics of flomoxef and amikacin in combination. METHODS: The pharmacodynamic interaction of flomoxef and amikacin was assessed in chequerboard assays and a 16-arm dose-ranged hollow-fibre infection model (HFIM) experiment. The combination was further assessed in HFIM experiments mimicking neonatal plasma exposures of clinically relevant doses of both drugs against five Enterobacterales isolates with a range of flomoxef/amikacin MICs. RESULTS: Flomoxef and amikacin in combination were synergistic in bacterial killing in both assays and prevention of emergence of amikacin resistance in the HFIM. In the HFIM assessing neonatal-like drug exposures, the combination killed 3/5 strains to sterility, (including 2/5 that monotherapy with either drug failed to kill) and failed to kill the 2/5 strains with flomoxef MICs of 32 mg/L. CONCLUSIONS: We conclude that the combination of flomoxef and amikacin is synergistic and is a potentially clinically effective regimen for the empirical treatment of neonatal sepsis in LMIC settings and is therefore suitable for further assessment in a clinical trial.


Assuntos
Amicacina , Sepse Neonatal , Lactente , Recém-Nascido , Humanos , Amicacina/farmacologia , Amicacina/uso terapêutico , Sepse Neonatal/tratamento farmacológico , Cefalosporinas , Testes de Sensibilidade Microbiana , Antibacterianos/farmacologia , Antibacterianos/uso terapêutico , Atenção à Saúde
2.
J Antimicrob Chemother ; 77(5): 1334-1343, 2022 04 27.
Artigo em Inglês | MEDLINE | ID: mdl-35170719

RESUMO

BACKGROUND: Neonatal sepsis is a serious bacterial infection of neonates, globally killing up to 680 000 babies annually. It is frequently complicated by antimicrobial resistance, particularly in low- and middle-income country (LMIC) settings with widespread resistance to the WHO's recommended empirical regimen of ampicillin and gentamicin. OBJECTIVES: We assessed the utility of flomoxef and fosfomycin as a potential alternative empirical regimen for neonatal sepsis in these settings. METHODS: We studied the combination in a 16-arm dose-ranged hollow-fibre infection model (HFIM) experiment and chequerboard assays. We further assessed the combination using clinically relevant regimens in the HFIM with six Enterobacterales strains with a range of flomoxef/fosfomycin MICs. RESULTS: Pharmacokinetic/pharmacodynamic modelling of the HFIM experimental output, along with data from chequerboard assays, indicated synergy of this regimen in terms of bacterial killing and prevention of emergence of fosfomycin resistance. Flomoxef monotherapy was sufficient to kill 3/3 strains with flomoxef MICs ≤0.5 mg/L to sterility. Three of three strains with flomoxef MICs ≥8 mg/L were not killed by fosfomycin or flomoxef monotherapy; 2/3 of these were killed with the combination of the two agents. CONCLUSIONS: These data suggest that flomoxef/fosfomycin could be an efficacious and synergistic regimen for the empirical treatment of neonatal sepsis in LMIC settings with prevalent antimicrobial resistance. Our HFIM results warrant further assessment of the flomoxef/fosfomycin combination in clinical trials.


Assuntos
Fosfomicina , Sepse Neonatal , Antibacterianos/farmacologia , Antibacterianos/uso terapêutico , Cefalosporinas , Farmacorresistência Bacteriana , Fosfomicina/farmacologia , Fosfomicina/uso terapêutico , Humanos , Recém-Nascido , Testes de Sensibilidade Microbiana , Sepse Neonatal/tratamento farmacológico
3.
Paediatr Drugs ; 23(5): 465-484, 2021 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-34435316

RESUMO

Neonatal sepsis causes up to an estimated 680,000 deaths annually worldwide, predominantly in low- and middle-income countries (LMICs). A significant and growing proportion of bacteria causing neonatal sepsis are resistant to multiple antibiotics, including the World Health Organization-recommended empiric neonatal sepsis regimen of ampicillin/gentamicin. The Global Antibiotic Research and Development Partnership is aiming to develop alternative empiric antibiotic regimens that fulfil several criteria: (1) affordable in LMIC settings; (2) activity against neonatal bacterial pathogens, including extended-spectrum ß-lactamase producers, gentamicin-resistant Gram-negative bacteria, and methicillin-resistant Staphylococcus aureus (MRSA); (3) a licence for neonatal use or extensive experience of use in neonates; and (4) minimal toxicities. In this review, we identify five antibiotics that fulfil these criteria: amikacin, tobramycin, fosfomycin, flomoxef, and cefepime. We describe the available characteristics of each in terms of mechanism of action, resistance mechanisms, clinical pharmacokinetics, pharmacodynamics, and toxicity profile. We also identify some knowledge gaps: (1) the neonatal pharmacokinetics of cefepime is reliant on relatively small and limited datasets, and the pharmacokinetics of flomoxef are also reliant on data from a limited demographic range and (2) for all reviewed agents, the pharmacodynamic index and target has not been definitively established for both bactericidal effect and emergence of resistance, with many assumed to have an identical index/target to similar class molecules. These five agents have the potential to be used in novel combination empiric regimens for neonatal sepsis. However, the data gaps need addressing by pharmacokinetic trials and pharmacodynamic characterisation.


Assuntos
Staphylococcus aureus Resistente à Meticilina , Sepse Neonatal , Sepse , Antibacterianos/farmacologia , Antibacterianos/uso terapêutico , Bactérias , Farmacorresistência Bacteriana Múltipla , Humanos , Recém-Nascido , Testes de Sensibilidade Microbiana , Sepse Neonatal/tratamento farmacológico , Sepse/tratamento farmacológico
4.
Antimicrob Agents Chemother ; 65(7): e0029321, 2021 06 17.
Artigo em Inglês | MEDLINE | ID: mdl-33972238

RESUMO

Antimicrobial resistance (particularly through extended-spectrum ß-lactamase and aminoglycoside-modifying enzyme production) in neonatal sepsis is a global problem, particularly in low- and middle-income countries, with significant mortality rates. High rates of resistance are reported for the current WHO-recommended first-line antibiotic regimen for neonatal sepsis, i.e., ampicillin and gentamicin. We assessed the utility of fosfomycin and amikacin as a potential alternative regimen to be used in settings of increasingly prevalent antimicrobial resistance. The combination was studied in a 16-arm dose-ranged hollow-fiber infection model (HFIM) experiment. The combination of amikacin and fosfomycin enhanced bactericidal activity and prevented the emergence of resistance, compared to monotherapy with either antibiotic. Modeling of the experimental quantitative outputs and data from checkerboard assays indicated synergy. We further assessed the combination regimen at clinically relevant doses in the HFIM with nine Enterobacterales strains with high fosfomycin and amikacin MICs and demonstrated successful kill to sterilization for 6/9 strains. From these data, we propose a novel combination breakpoint threshold for microbiological success for this antimicrobial combination against Enterobacterales strains, i.e., MICF × MICA < 256 (where MICF and MICA are the fosfomycin and amikacin MICs, respectively). Monte Carlo simulations predict that a standard fosfomycin-amikacin neonatal regimen would achieve >99% probability of pharmacodynamic success for strains with MICs below this threshold. We conclude that the combination of fosfomycin with amikacin is a viable regimen for the empirical treatment of neonatal sepsis and is suitable for further clinical assessment in a randomized controlled trial.


Assuntos
Antibacterianos , Fosfomicina , Sepse Neonatal , Amicacina , Antibacterianos/farmacologia , Antibacterianos/uso terapêutico , Farmacorresistência Bacteriana , Fosfomicina/farmacologia , Fosfomicina/uso terapêutico , Humanos , Recém-Nascido , Testes de Sensibilidade Microbiana , Sepse Neonatal/tratamento farmacológico
5.
Antimicrob Agents Chemother ; 64(11)2020 10 20.
Artigo em Inglês | MEDLINE | ID: mdl-32778549

RESUMO

Enterobacteriaceae that produce metallo-ß-lactamases (MBLs) are an emerging threat to public health. The metallo-ß-lactamase inhibitor (MBLi) ANT2681 inhibits the enzymatic activity of MBLs through interaction with the dinuclear zinc ion cluster present in the active site that is common to these enzymes. ANT2681 is being codeveloped, with meropenem as the partner ß-lactam, as a novel combination therapy for infections caused by MBL-producing bacteria. The pharmacokinetics/pharmacodynamics of meropenem-ANT2681 were studied in a murine neutropenic thigh model of NDM-producing Enterobacteriaceae Dose-ranging studies were performed with both meropenem and ANT2681. Dose fractionation experiments were performed to identify the relevant pharmacodynamic index of ANT2681 when coadministered with meropenem. A background of meropenem at 50 mg/kg of body weight every 4 h (q4h) subcutaneously (s.c.) had minimal antibacterial effect. On this background, half-maximal effect was observed with an ANT2681 dose of 89 mg/kg q4h intravenously (i.v.). The dose fractionation study showed that area under the concentration-time curve (AUC) was the relevant pharmacodynamic index for the inhibitor. The magnitude of the meropenem-ANT2681 exposure required to achieve stasis was explored using 5 NDM-producing strains. A 3-dimensional surface fitted to the pharmacodynamic data from the 5 strains suggested that stasis was achieved with an fT > potentiated meropenem MIC of 40% and ANT2681 AUC of 700 mg · h/liter. These data and analyses provide the underpinning evidence for the combined use of meropenem and ANT2681 for clinical infections.


Assuntos
Infecções por Enterobacteriaceae , Inibidores de beta-Lactamases , Animais , Antibacterianos/farmacologia , Enterobacteriaceae , Infecções por Enterobacteriaceae/tratamento farmacológico , Meropeném/farmacologia , Camundongos , Testes de Sensibilidade Microbiana , Monobactamas , Inibidores de beta-Lactamases/farmacologia , beta-Lactamases
6.
Artigo em Inglês | MEDLINE | ID: mdl-32015049

RESUMO

An extensive clinical development program (comprising two phase 2 and five phase 3 trials) has demonstrated the efficacy and safety of ceftazidime-avibactam in the treatment of adults with complicated intra-abdominal infection (cIAI), complicated urinary tract infection (cUTI), and hospital-acquired pneumonia (HAP), including ventilator-associated pneumonia (VAP). During the phase 3 clinical program, updated population pharmacokinetic (PK) modeling and Monte Carlo simulations using clinical PK data supported modified ceftazidime-avibactam dosage adjustments for patients with moderate or severe renal impairment (comprising a 50% increase in total daily dose compared with the original dosage adjustments) to reduce the risk of subtherapeutic drug exposures in the event of rapidly improving renal function. The modified dosage adjustments were included in the ceftazidime-avibactam labeling information at the time of initial approval and were subsequently evaluated in the final phase 3 trial (in patients with HAP, including VAP), providing supportive data for the approved U.S. and European ceftazidime-avibactam dosage regimens across renal function categories. This review describes the analyses supporting the ceftazidime-avibactam dosage adjustments for renal impairment and discusses the wider implications and benefits of using modeling and simulation to support dosage regimen optimization based on emerging clinical evidence.


Assuntos
Antibacterianos/uso terapêutico , Compostos Azabicíclicos/farmacocinética , Compostos Azabicíclicos/uso terapêutico , Ceftazidima/farmacocinética , Ceftazidima/uso terapêutico , Infecções Intra-Abdominais/tratamento farmacológico , Pneumonia Associada à Ventilação Mecânica/tratamento farmacológico , Infecções Urinárias/tratamento farmacológico , Inibidores de beta-Lactamases/uso terapêutico , Antibacterianos/farmacocinética , Combinação de Medicamentos , Cálculos da Dosagem de Medicamento , Farmacorresistência Bacteriana Múltipla/genética , Humanos , Testes de Sensibilidade Microbiana , Insuficiência Renal/patologia , Inibidores de beta-Lactamases/farmacocinética
7.
Artigo em Inglês | MEDLINE | ID: mdl-31109982

RESUMO

Tebipenem pivoxil HBr (TBPM-PI-HBr) is a novel orally bioavailable carbapenem. The active moiety is tebipenem. Tebipenem pivoxil is licensed for use in Japan in children with ear, nose, and throat infections and respiratory infections. The HBr salt was designed to improve drug substance and drug product properties, including stability. TBPM-PI-HBr is now being developed as an agent for the treatment of complicated urinary tract infections (cUTI) in adults. The pharmacokinetics-pharmacodynamics of tebipenem were studied in a well-characterized neutropenic murine thigh infection model. Plasma drug concentrations were measured using liquid chromatography-tandem mass spectrometry. Dose fractionation experiments were performed after establishing dose-response relationships. The magnitude of drug exposure required for stasis was established using 11 strains of Enterobacteriaceae (Escherichia coli, n = 6; Klebsiella pneumoniae, n = 5) with a variety of resistance mechanisms. The relationship between drug exposure and the emergence of resistance was established in a hollow-fiber infection model (HFIM). Tebipenem exhibited time-dependent pharmacodynamics that were best described by the free drug area under the concentration-time curve (fAUC0-24)/MIC corrected for the length of the dosing interval (fAUC0-24/MIC · 1/tau). The pharmacodynamics of tebipenem versus E. coli and K. pneumoniae were comparable, as was the response of strains possessing extended-spectrum ß-lactamases versus the wild type. The median fAUC0-24/MIC · 1/tau value for the achievement of stasis in the 11 strains was 23. Progressively more fractionated regimens in the HFIM resulted in the suppression of resistance. An fAUC0-24/MIC · 1/tau value of 34.58 to 51.87 resulted in logarithmic killing and the suppression of resistance. These data and analyses will be used to define the regimen for a phase III study of adult patients with cUTI.


Assuntos
Anti-Infecciosos/farmacologia , Carbapenêmicos/farmacologia , Farmacorresistência Bacteriana Múltipla/efeitos dos fármacos , Administração Oral , Animais , Modelos Animais de Doenças , Escherichia coli/efeitos dos fármacos , Klebsiella pneumoniae/efeitos dos fármacos , Masculino , Camundongos , Testes de Sensibilidade Microbiana , Infecções Urinárias/tratamento farmacológico , Infecções Urinárias/microbiologia
8.
Int J Antimicrob Agents ; 53(6): 830-837, 2019 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-30716446

RESUMO

This post-hoc analysis compared the pharmacokinetics and clinical outcomes of ceftaroline fosamil 600 mg every 12 (q12h) versus every 8 hours (q8h) in patients with acute bacterial skin and skin-structure infection (ABSSSI) and signs of sepsis. Clinical outcomes at test-of-cure in patients with ABSSSI and systemic inflammatory signs/systemic inflammatory response syndrome (SIRS) as well as ceftaroline minimum inhibitory concentrations (MICs) against baseline pathogens were compared between the COVERS trial (ceftaroline fosamil 600 mg q8h, 2-h infusion) and the CANVAS 1 and 2 trials (ceftaroline fosamil 600 mg q12h, 1-h infusion). Ceftaroline exposure among patients in COVERS with or without markers of sepsis was compared using population pharmacokinetic modelling. In COVERS, 62% (312/506) and 41% (208/506) of ceftaroline fosamil-treated patients had ≥1 systemic inflammatory sign or SIRS, respectively, compared with 55% (378/693) and 22% (155/693), respectively, in the CANVAS trials. Clinical cure rates for the modified intent-to-treat population in COVERS and CANVAS were similar for ceftaroline fosamil-treated patients with ≥1 sign of sepsis [82% (255/312) and 85% (335/394)] and for those with SIRS [84% (168/199) and 85% (131/155)]. Ceftaroline MIC distributions were similar across trials. Sepsis did not affect predicted individual steady-state ceftaroline exposure. Clinical cure rates in patients with ≥1 systemic inflammatory sign or SIRS were comparable for both ceftaroline fosamil dosage regimens. Pathogen susceptibilities to ceftaroline were similar across trials. Ceftaroline exposure was not affected by disease severity. Ceftaroline fosamil 600 mg q12h is a robust dosage regimen for most ABSSSI patients with sepsis [ClinicalTrials.gov ID: NCT01499277, NCT00424190, NCT00423657].


Assuntos
Antibacterianos/administração & dosagem , Cefalosporinas/administração & dosagem , Dermatopatias Bacterianas/complicações , Dermatopatias Bacterianas/tratamento farmacológico , Síndrome de Resposta Inflamatória Sistêmica/tratamento farmacológico , Adulto , Idoso , Idoso de 80 Anos ou mais , Antibacterianos/farmacocinética , Bactérias/efeitos dos fármacos , Bactérias/isolamento & purificação , Cefalosporinas/farmacocinética , Ensaios Clínicos Fase III como Assunto , Feminino , Humanos , Masculino , Testes de Sensibilidade Microbiana , Pessoa de Meia-Idade , Ensaios Clínicos Controlados Aleatórios como Assunto , Estudos Retrospectivos , Dermatopatias Bacterianas/patologia , Síndrome de Resposta Inflamatória Sistêmica/patologia , Resultado do Tratamento , Ceftarolina
9.
J Clin Pharmacol ; 57(3): 345-355, 2017 03.
Artigo em Inglês | MEDLINE | ID: mdl-27510635

RESUMO

Ceftaroline, the active form of the prodrug ceftaroline fosamil, is approved for use in adults with community-acquired bacterial pneumonia (CABP) or acute bacterial skin and skin structure infections (ABSSSI) in the United States and for similar indications in Europe. Pharmacokinetic (PK) data from 5 pediatric (birth to <18 years) studies of ceftaroline fosamil were combined with PK data from adults to update a population PK model for ceftaroline and ceftaroline fosamil. This model, based on a data set including 305 children, was used to conduct simulations to estimate ceftaroline exposures and percentage of time that free drug concentrations were above the minimum inhibitory concentration (%fT>MIC) for pediatric dose regimens. With dose regimens of 8 mg/kg every 8 hours (q8h) in children aged 2 months to <2 years and 12 mg/kg (up to a maximum of 400 mg) q8h in children aged 2 years to <18 years or 600 mg q12h in children aged 12 to <18 years, >90% of children were predicted to achieve a target of 36% fT>MIC at an MIC of 2 mg/L, and >97% were predicted to achieve 44% fT>MIC at an MIC of 1 mg/L. Thus, high PK/pharmacodynamic target attainment would be maintained in children for targets associated with 1-log kill of Staphylococcus aureus and Streptococcus pneumoniae. The predicted ceftaroline exposures for these dose regimens were similar to those in adults given 600 mg q12h ceftaroline fosamil. This work contributed to the approval of dose regimens for children aged 2 months to <18 years by the FDA and EMA, which are presented.


Assuntos
Antibacterianos/farmacocinética , Antibacterianos/uso terapêutico , Cefalosporinas/farmacocinética , Cefalosporinas/uso terapêutico , Pneumonia Bacteriana/tratamento farmacológico , Dermatopatias Bacterianas/tratamento farmacológico , Doença Aguda , Adolescente , Antibacterianos/farmacologia , Cefalosporinas/farmacologia , Criança , Pré-Escolar , Ensaios Clínicos como Assunto , Infecções Comunitárias Adquiridas , Simulação por Computador , Feminino , Humanos , Lactente , Masculino , Testes de Sensibilidade Microbiana , Modelos Biológicos , Staphylococcus aureus , Streptococcus pneumoniae , Ceftarolina
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA