Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 26
Filtrar
1.
Int J Mol Sci ; 24(17)2023 Aug 29.
Artigo em Inglês | MEDLINE | ID: mdl-37686193

RESUMO

Garlic (Allium sativum L.) is an aromatic herb known for its culinary and medicinal uses for centuries. Both unprocessed (white) and processed (black) garlic are known to protect against the pathobiology of neurological disorders such as Alzheimer's disease (AD) and Parkinson's disease (PD), which has been attributed to their anti-inflammatory and antioxidant properties. The information on the effects of processed and unprocessed garlic on neuronal process outgrowth, maturation, and synaptic development is limited. This study aimed at investigating and comparing the effects of the ethanol extracts of unprocessed (white garlic extract, WGE) and processed (black garlic extract, BGE) garlic on the maturation of primary hippocampal neurons. Neurite outgrowth was stimulated in a dose-dependent manner by both WGE and BGE and the most effective doses were 15 µg/mL and 60 µg/mL, respectively, without showing cytotoxicity. At this optimal concentration, both extracts promoted axonal and dendritic growth and maturation. Furthermore, both extracts substantially increased the formation of functional synapses. However, the effect of WGE was more robust at every developmental stage of neurons. In addition, the gas chromatography and mass spectrometry (GC-MS) analysis revealed a chemical profile of various bioactives in both BGE and WGE. Linalool, a compound that was found in both extracts, has shown neurite outgrowth-promoting activity in neuronal cultures, suggesting that the neurotrophic activity of garlic extracts is attributed, at least in part, to this compound. By using network pharmacology, linalool's role in neuronal development can also be observed through its modulatory effect on the signaling molecules of neurotrophic signaling pathways such as glycogen synthase kinase 3 (GSK3ß), extracellular signal-regulated protein kinase (Erk1/2), which was further verified by immunocytochemistry. Overall, these findings provide information on the molecular mechanism of processed and unprocessed garlic for neuronal growth, survival, and memory function which may have the potential for the prevention of several neurological disorders.


Assuntos
Produtos Biológicos , Alho , Animais , Ratos , Antioxidantes , Neurônios , Etanol , MAP Quinases Reguladas por Sinal Extracelular , Extratos Vegetais/farmacologia
2.
Int J Mol Sci ; 24(10)2023 May 10.
Artigo em Inglês | MEDLINE | ID: mdl-37239909

RESUMO

Reviving the neuronal functions in neurodegenerative disorders requires the promotion of neurite outgrowth. Thymol, which is a principal component of Trachyspermum ammi seed extract (TASE), is reported to have neuroprotective effects. However, the effects of thymol and TASE on neuronal differentiation and outgrowth are yet to be studied. This study is the first report investigating the neuronal growth and maturation effects of TASE and thymol. Pregnant mice were orally supplemented with TASE (250 and 500 mg/kg), thymol (50 and 100 mg/kg), vehicle, and positive controls. The supplementation significantly upregulated the expression of brain-derived neurotrophic factor (BDNF) and early neuritogenesis markers in the pups' brains at post-natal day 1 (P1). Similarly, the BDNF level was significantly upregulated in the P12 pups' brains. Furthermore, TASE (75 and 100 µg/mL) and thymol (10 and 20 µM) enhanced the neuronal polarity, early neurite arborization, and maturation of hippocampal neurons in a dose-dependent manner in primary hippocampal cultures. The stimulatory activities of TASE and thymol on neurite extension involved TrkB signaling, as evidenced by attenuation via ANA-12 (5 µM), which is a specific TrkB inhibitor. Moreover, TASE and thymol rescued the nocodazole-induced blunted neurite extension in primary hippocampal cultures, suggesting their role as a potent microtubule stabilizing agent. These findings demonstrate the potent capacities of TASE and thymol in promoting neuronal development and reconstruction of neuronal circuitry, which are often compromised in neurodegenerative diseases and acute brain injuries.


Assuntos
Apiaceae , Extratos Vegetais , Timol , Animais , Feminino , Camundongos , Gravidez , Apiaceae/química , Fator Neurotrófico Derivado do Encéfalo/metabolismo , Suplementos Nutricionais , Hipocampo/metabolismo , Extratos Vegetais/farmacologia , Transdução de Sinais , Timol/farmacologia , Vitaminas/farmacologia , Fenômenos Fisiológicos da Nutrição Materna
3.
Phytother Res ; 37(7): 2811-2826, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-36808768

RESUMO

Several reports have stated the neuroprotective and learning/memory effects of Tachyspermum ammi seed extract (TASE) and its principal component thymol; however, little is known about its underlying molecular mechanisms and neurogenesis potential. This study aimed to provide insights into TASE and a thymol-mediated multifactorial therapeutic approach in a scopolamine-induced Alzheimer's disease (AD) mouse model. TASE and thymol supplementation significantly reduced oxidative stress markers such as brain glutathione, hydrogen peroxide, and malondialdehyde in mouse whole brain homogenates. Tumor necrosis factor-alpha was significantly downregulated, whereas the elevation of brain-derived neurotrophic factor and phospho-glycogen synthase kinase-3 beta (serine 9) enhanced learning and memory in the TASE- and thymol-treated groups. A significant reduction in the accumulation of Aß 1-42 peptides was observed in the brains of TASE- and thymol-treated mice. Furthermore, TASE and thymol significantly promoted adult neurogenesis, with increased doublecortin positive neurons in the subgranular and polymorphic zones of the dentate gyrus in treated-mice. Collectively, TASE and thymol could  potentially act as natural therapeutic agents for the treatment of  neurodegenerative disorders, such as  AD.


Assuntos
Doença de Alzheimer , Ammi , Apiaceae , Fármacos Neuroprotetores , Camundongos , Animais , Doença de Alzheimer/induzido quimicamente , Doença de Alzheimer/tratamento farmacológico , Timol/farmacologia , Timol/uso terapêutico , Escopolamina/efeitos adversos , Neuroproteção , Extratos Vegetais/farmacologia , Extratos Vegetais/uso terapêutico , Modelos Animais de Doenças , Fármacos Neuroprotetores/farmacologia , Fármacos Neuroprotetores/uso terapêutico
4.
J Ethnopharmacol ; 306: 116165, 2023 Apr 24.
Artigo em Inglês | MEDLINE | ID: mdl-36641106

RESUMO

ETHNOPHARMACOLOGICAL RELEVANCE: Acceleration of neurite outgrowth and halting neurodegeneration are the most critical factors that are negatively regulated in various neurodegenerative diseases or injuries in the central nervous system (CNS). Functional foods or nutrients are considered alternative sources of bioactive components to alleviate various CNS injuries by promoting neuritogenesis and synaptogenesis, while their exact molecular mechanism remains unexplored. AIM OF THE STUDY: Coriandrum sativum L. (CS) is one of the popular herbs in the Apiaceae family, of which CNS modulating action is a well-documented traditionally but detailed study on memory boosting function yet remains unexplored. Consequently, this study aims to analyze the neurogenic and synaptogenic modulation of CS aqueous ethanol (CSAE) extract in the primary hippocampal neurons. MATERIALS AND METHODS: Primary hippocampal neurons were cultured and allowed to incubate with CSAE or vehicle. To observe the early neuronal differentiation, axonal and dendritic arborization, and synapse formation, neurons were immune-stained against indicated antibodies or stained directly with a lipophilic dye (1, 1'-dioctadecyl-3, 3, 3', 3'-tetramethyl indocarbocyanine perchlorate, DiL). Meanwhile, western blot was used to validate the synaptogenesis effect of CSAE compared to vehicle. Additionally, molecular docking and system pharmacology approaches were applied to confirm the possible secondary metabolites and pathways by which CSAE promotes neuritogenesis. RESULTS: Results show that CSAE can induce neuritogenesis and synaptogenesis at 30 µg/mL concentration. The treatment impacts early neuronal polarization, axonal and dendritic arborization, synaptogenesis, and synaptic plasticity via NMDARs expressions in primary neurons. In silico network pharmacology of CS metabolites show that the CSAE-mediated neurogenic effect is likely dependent on the NTRK2 (TrkB) mediated neurotrophin signaling pathway. Indeed, the observed neurogenic activity of CSAE is markedly reduced upon the co-treatment with a TrkB-specific inhibitor. Furthermore, molecular docking following binding energy calculation shows that one of the CS metabolites, scoparone, has a high affinity to bind in the BDNF mimetic binding site of TrkB, suggesting its role in TrkB activation. Scoparone was found to enhance neuritogenesis, but not to the same extent as CSAE. Moreover, the expression of TrkB signaling-related proteins (BCL2, CASP3, GSK3, and BDNF), which was found to be modulated by scoparone, was significantly affected by the co-treatment of TrkB inhibitor (ANA-12). These results further suggest that the modulation of neuritogenesis by scoparone is TrkB-dependent. CONCLUSIONS: This study provides deeper insights into the molecular mechanism of CS in boosting neuronal growth and memory function, which might implicate the prevention of many neurological disorders.


Assuntos
Coriandrum , Coriandrum/metabolismo , Fator Neurotrófico Derivado do Encéfalo/metabolismo , Quinase 3 da Glicogênio Sintase/metabolismo , Quinase 3 da Glicogênio Sintase/farmacologia , Simulação de Acoplamento Molecular , Neurônios , Receptor trkB/metabolismo , Hipocampo , Células Cultivadas
5.
Curr Neuropharmacol ; 21(2): 353-379, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-35272592

RESUMO

Radiation for medical use is a well-established therapeutic method with an excellent prognosis rate for various cancer treatments. Unfortunately, a high dose of radiation therapy comes with its own share of side effects, causing radiation-induced non-specific cellular toxicity; consequently, a large percentage of treated patients suffer from chronic effects during the treatment and even after the post-treatment. Accumulating data evidenced that radiation exposure to the brain can alter the diverse cognitive-related signaling and cause progressive neurodegeneration in patients because of elevated oxidative stress, neuroinflammation, and loss of neurogenesis. Epidemiological studies suggested the beneficial effect of hormonal therapy using estrogen in slowing down the progression of various neuropathologies. Despite its primary function as a sex hormone, estrogen is also renowned for its neuroprotective activity and could manage radiation-induced side effects as it regulates many hallmarks of neurodegenerations. Thus, treatment with estrogen and estrogen-like molecules or modulators, including phytoestrogens, might be a potential approach capable of neuroprotection in radiation-induced brain degeneration. This review summarized the molecular mechanisms of radiation effects and estrogen signaling in the manifestation of neurodegeneration and highlighted the current evidence on the phytoestrogen mediated protective effect against radiationinduced brain injury. This existing knowledge points towards a new area to expand to identify the possible alternative therapy that can be taken with radiation therapy as adjuvants to improve patients' quality of life with compromised cognitive function.


Assuntos
Fitoestrógenos , Qualidade de Vida , Humanos , Fitoestrógenos/farmacologia , Fitoestrógenos/uso terapêutico , Estrogênios/uso terapêutico , Estrogênios/farmacologia , Encéfalo
6.
Artigo em Inglês | MEDLINE | ID: mdl-36225186

RESUMO

Convolvulus pluricaulis (CP), a Medhya Rasayana (nootropic) herb, is a major ingredient in Ayurvedic and Traditional Chinese formulae indicated for neurological conditions, namely, dementia, anxiety, depression, insanity, and epilepsy. Experimental evidence suggests various neuroactive potentials of CP such as memory-enhancing, neuroprotective, and antiepileptic. However, precise mechanisms underlying the neuropharmacological effects of CP remain unclear. The study, therefore, aimed at deciphering the molecular basis of neuroprotective effects of CP phytochemicals against the pathology of dementia disorders such as Alzheimer's (AD) and Parkinson's (PD) disease. The study exploited bioinformatics tools and resources, such as Cytoscape, DAVID (Database for annotation, visualization, and integrated discovery), NetworkAnalyst, and KEGG (Kyoto Encyclopedia of Genes and Genomes) database to investigate the interaction between CP compounds and molecular targets. An in silico analysis was also employed to screen druglike compounds and validate some selective interactions. ADME (absorption, distribution, metabolism, and excretion) analysis predicted a total of five druglike phytochemicals from CP constituents, namely, scopoletin, 4-hydroxycinnamic acid, kaempferol, quercetin, and ayapanin. In network analysis, these compounds were found to interact with some molecular targets such as prostaglandin G/H synthase 1 and 2 (PTGS1 and PTGS2), endothelial nitric oxide synthase (NOS3), insulin receptor (INSR), heme oxygenase 1 (HMOX1), acetylcholinesterase (ACHE), peroxisome proliferator-activated receptor-gamma (PPARG), and monoamine oxidase A and B (MAOA and MAOB) that are associated with neuronal growth, survival, and activity. Docking simulation further confirmed interaction patterns and binding affinity of selected CP compounds with those molecular targets. Notably, scopoletin showed the highest binding affinity with PTGS1, NOS3, PPARG, ACHE, MAOA, MAOB, and TRKB, quercetin with PTGS2, 4-hydroxycinnamic acid with INSR, and ayapanin with HMOX1. The findings indicate that scopoletin, kaempferol, quercetin, 4-hydroxycinnamic acid, and ayapanin are the main active constituents of CP which might account for its memory enhancement and neuroprotective effects and that target proteins such as PTGS1, PTGS2, NOS3, PPARG, ACHE, MAOA, MAOB, INSR, HMOX1, and TRKB could be druggable targets against dementia.

7.
Curr Pharm Des ; 28(19): 1561-1580, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35652403

RESUMO

Prostate cancer remains one of the most frequent and deadliest malignancies in males, where the rate of disease progression is closely associated with the type of dietary intake, specifically a Western-style diet. Indeed intake of the Asian diet, which contains abundant phytoestrogens, is inversely correlated with a higher risk of prostate cancer, suggesting a chemoprotective effect of phytoestrogen against cancer progression. Although the role of phytoestrogens in cancer treatment has been well documented, their impact on prostate cancer is not well understood. Therefore, the present review discusses the possible chemopreventive effect of phytoestrogens, emphasizing their efficacy at the different stages of carcinogenesis. Furthermore, phytoestrogens provide a cytoprotective effect in conventional chemotherapy and enhance chemosensitivity to tumor cells, which have also been discussed. This compilation provides a solid basis for future research on phytoestrogens as a promising avenue for anticancer drug development and also recommends these beneficiary compounds in the daily diet to manage and prevent prostate cancer.


Assuntos
Anticarcinógenos , Neoplasias da Próstata , Dieta , Humanos , Masculino , Fitoestrógenos/farmacologia , Fitoestrógenos/uso terapêutico , Neoplasias da Próstata/tratamento farmacológico , Neoplasias da Próstata/prevenção & controle
8.
Phytother Res ; 36(6): 2524-2541, 2022 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-35443091

RESUMO

Withania somnifera (WS), is known for its remarkable contribution in herbal medicine and Ayurveda, which is therapeutically applied to improve memory and anxiety in patients. However, the pharmacological details of this plant on memory boosting yet remained undefined. This study provides mechanistic insights on the effect of ethanol solution extract of the whole plant of WS (WSEE) on neuritogenesis by combining in vitro and in silico network pharmacology approaches. WSEE promoted significant neuronal growth through early differentiation, axodendritic arborization, and synaptogenesis on primary hippocampal neurons. The network pharmacological study confirmed that the neuritogenic activity is potentially mediated by modulating the neurotrophin signaling pathway, where NRTK1 (TrkA) was revealed as the primary target of WS secondary metabolites. This neurotrophic activity of WSEE was significantly stifled by the presence of TrkA inhibitor, which further confirms the TrkA-dependent activity of WSEE. In addition, a molecular docking study suggested steroidal lactones present in the WS might act as nerve growth factor (NGF)-mimetics, activating TrkA by binding to the NGF-binding domain. As a whole, the findings of the study suggest a significant role of WSEE on neuritogenesis and its potential to function as a therapeutic agent and in drug designing for the prevention and treatment of memory-related neurological disorders.


Assuntos
Withania , Humanos , Transtornos da Memória/tratamento farmacológico , Simulação de Acoplamento Molecular , Fator de Crescimento Neural/metabolismo , Fator de Crescimento Neural/farmacologia , Fator de Crescimento Neural/uso terapêutico , Farmacologia em Rede , Neurônios , Extratos Vegetais/uso terapêutico , Withania/química
9.
Heliyon ; 8(1): e08815, 2022 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-35128104

RESUMO

BACKGROUND: Cancer has become a significant concern in the medical sector with increasing disease complexity. Although some available conventional treatments are still a blessing for cancer patients, short-and long-term adverse effects and poor efficiency make it more difficult to treat cancer patients, demonstrating the need for new potent and selective anticancer drugs. In search of potent anticancer agents, naturally occurring compounds have always been admired due to their structural diversity, where Hesperetin (HSP) may be one of the potent candidates. PURPOSE: We aimed to summarize all sources, pharmacological properties, anticancer activities of HSP against numerous cancers types through targeting multiple pathological processes, mechanism of HSP on sensitizing the current anti-cancer agents and other phytochemicals, overcoming resistance pattern and determining absorption, distribution, metabolism, excretion, and toxicity (ADME/Tox). METHODS: Information was retrieved from PubMed, Science Direct, and Google Scholar based on some key points like Hesperetin, cancer name, anticancer resistance, nanoformulation, and ADME/Tox was determined by in silico approaches. RESULT: HSP is a phytoestrogen present in citrus fruits in a high concentration (several hundred mg/kg) and exhibited anti-cancer activities through interfering at several pathways. HSP can suppress tumor formation by targeting several cellular proteins such as cell cycle regulatory, apoptosis, metastatic, tyrosine kinase, growth factor receptor, estrogen metabolism, and antioxidant-related protein.HSP has shown remarkable synergistic properties in combination therapy and has been reported to overcome multidrug cancer resistance drugs, leading to an improved defensive mechanism. These anticancer activities of HSP may be due to proper structural chemistry. CONCLUSION: Overall, HSP showed potential anticancer activities against all cancer and possess better pharmacokinetic properties. So this phytochemical alone or combination with other agents can be an effective alternative drug for cancer treatment.

10.
Med Chem ; 18(6): 724-733, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-34844546

RESUMO

BACKGROUND: One of the essential resources for developing new drugs are naturally derived biologically active lead compounds. Biomedical researchers and pharmaceutical companies are highly interested in these plant-derived molecules to develop the new drug. In this process, collective information of the plants and their phytoconstituents with different properties and descriptors would greatly benefit the researchers to identify the hit, lead or drug-like compound. AIM AND OBJECTIVE: Therefore, the work intended to develop a unique and dynamic database Green- MolBD to provide collective information regarding medicinal plants, such as their profile, chemical constituents, and pharmacological evidence. We also aimed to present information of phytoconstituents, such as in silico description, quantum, drugability and biological target information. METHODS: For data mining, we covered all accessible literature and books, and for in silico analysis, we employed a variety of well-known software and servers. The database is integrated by MySQL, HTML, PHP and JavaScript. RESULTS: GreenMolBD is a freely accessible database and searchable by keywords, plant name, synonym, common name, family name, family synonym, compound name, IUPAC name, InChI Key, target name, and disease name. We have provided a complete profile of individual plants and each compound's physical, quantum, drug likeliness, and toxicity properties (48 type's descriptor) using in silico tools. A total of 1846 associated targets related to 6,864 compounds already explored in different studies are also incorporated and synchronized. CONCLUSION: This is the first evidence-based database of bioactive molecules from medicinal plants specially grown in Bangladesh, which may help explore and foster nature-inspired rational drug discovery.


Assuntos
Bases de Dados de Compostos Químicos , Plantas Medicinais , Bases de Dados Factuais , Descoberta de Drogas , Plantas Medicinais/química
11.
Food Res Int ; 147: 110536, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-34399513

RESUMO

As lupin has emerged popularity as dietary protein and nutritional source, our present research was aimed to demonstrate the antidiabetic and organ-protective activities of nine cultivars of Australian sweet lupin seed flours by means of in vitro and in vivo assays accompanied by identification of their bioactive phytocompounds and exploration of underlying mechanisms of their hypoglycemic activity using in silico approach. In vitro α-amylase and α-glucosidase activities inhibition and glucose uptake assays identified Jenabillup seed flours for exhibiting the most potential antidiabetic activity amongst the nine cultivars. In vivo antidiabetic and major organ-protective activities were investigated on streptozotocin-induced hyperglycemia and organ damages in Wister rat model. Along with attenuating hyperglycemia and retreating major organ damages, the biochemical imbalance in cardiac, hepatic and renal markers were well-balanced by Jenabillup seed flours treatment. These activities of lupin seed flours were insignificantly affected by thermal processing. Moreover, in silico investigation of 106 phytochemicals identified by gas chromatography-mass spectroscopy (GC-MS) analysis of the seed flour extracts of nine cultivars revealed that more than 35% of compounds possess moderate to high binding affinity to α-amylase and α-glucosidase enzymes. These bioactive compounds act synergistically to exert potential hypoglycemic activity. Cross-docking and binding energy calculation by molecular mechanics/generalized Born volume integration (MM/GBVI) model suggest actinomycin C2 as a potential inhibitor of both α-amylase and α-glucosidase enzymes. These findings acclaim that Australian sweet lupin seed flours may be considered not only as functional food, but also for further development of effective drugs in pharmaceuticals in the treatment of diabetes mellitus and resultant organ damages.


Assuntos
Farinha , Hipoglicemiantes , Animais , Austrália , Hipoglicemiantes/farmacologia , Extratos Vegetais/farmacologia , Ratos , Ratos Wistar
12.
Nutrients ; 13(6)2021 May 24.
Artigo em Inglês | MEDLINE | ID: mdl-34073784

RESUMO

Mounting evidence support the potential benefits of functional foods or nutraceuticals for human health and diseases. Black cumin (Nigella sativa L.), a highly valued nutraceutical herb with a wide array of health benefits, has attracted growing interest from health-conscious individuals, the scientific community, and pharmaceutical industries. The pleiotropic pharmacological effects of black cumin, and its main bioactive component thymoquinone (TQ), have been manifested by their ability to attenuate oxidative stress and inflammation, and to promote immunity, cell survival, and energy metabolism, which underlie diverse health benefits, including protection against metabolic, cardiovascular, digestive, hepatic, renal, respiratory, reproductive, and neurological disorders, cancer, and so on. Furthermore, black cumin acts as an antidote, mitigating various toxicities and drug-induced side effects. Despite significant advances in pharmacological benefits, this miracle herb and its active components are still far from their clinical application. This review begins with highlighting the research trends in black cumin and revisiting phytochemical profiles. Subsequently, pharmacological attributes and health benefits of black cumin and TQ are critically reviewed. We overview molecular pharmacology to gain insight into the underlying mechanism of health benefits. Issues related to pharmacokinetic herb-drug interactions, drug delivery, and safety are also addressed. Identifying knowledge gaps, our current effort will direct future research to advance potential applications of black cumin and TQ in health and diseases.


Assuntos
Nigella sativa/química , Preparações de Plantas/química , Preparações de Plantas/farmacologia , Anti-Inflamatórios/farmacocinética , Anti-Inflamatórios/farmacologia , Antioxidantes/farmacocinética , Antioxidantes/farmacologia , Benzoquinonas/análise , Disponibilidade Biológica , Sobrevivência Celular/efeitos dos fármacos , Suplementos Nutricionais , Sistemas de Liberação de Medicamentos , Efeitos Colaterais e Reações Adversas Relacionados a Medicamentos , Metabolismo Energético , Alimento Funcional , Humanos , Imunomodulação/efeitos dos fármacos , Inflamação/terapia , Estresse Oxidativo/efeitos dos fármacos , Fitoterapia/métodos , Preparações de Plantas/farmacocinética
13.
Neurochem Int ; 144: 104957, 2021 03.
Artigo em Inglês | MEDLINE | ID: mdl-33444677

RESUMO

BACKGROUND: Centella asiatica is a 'medhya-rasayana (nootrophic or memory booster)' herb that has been indicated in Ayurveda for improving memory function and treating dementia disorders. Although the neuroprotective effects of C. asiatica have been reported in earlier studies, the information on whether this nootropic herb could promote early differentiation and development of axon and dendrites in primary hippocampal neurons is currently limited. THE AIM OF THE STUDY: To investigate the effects of C. asiatica and asiatic acid, one of the principal active constituents of C. asiatica, on the various stages of neuronal polarity, including early neuronal differentiation, axonal outgrowth, dendritic arborization, axonal maturation, and synaptic formation. MATERIALS AND METHODS: Embryonic rat hippocampal neurons were incubated with C. asiatica leaf extract (CAE) or asiatic acid. After an indicated time, neurons were fixed and immunolabeled to visualize the neuronal morphology. Morphometric analyses for early neuronal differentiation, axonal and dendritic maturation and synaptogenesis were performed using Image J software. Neuronal viability was determined using trypan blue exclusion assay. RESULTS: CAE at varying concentrations ranging from 3.75 to 15 µg/mL enhanced neurite outgrowth with the highest optimal concentration of 7.5 µg/mL. The effects of CAE commenced immediately after cell seeding, as indicated by its accelerating effect on neuronal differentiation. Subsequently, CAE significantly elaborated dendritic and axonal morphology and facilitated synapse formation. Asiatic acid also facilitated neurite outgrowth, but to a lesser extent than CAE. CONCLUSION: These findings revealed that CAE exerted its modulatory effects in every stage of neuronal development, supporting its previously claimed neurotrophic function and suggest that this natural nootropic and its active component asiatic acid can be further investigated to explore a promising solution for degenerative brain disorders and injuries.


Assuntos
Axônios/efeitos dos fármacos , Dendritos/efeitos dos fármacos , Hipocampo/efeitos dos fármacos , Neurônios/efeitos dos fármacos , Sinapses/efeitos dos fármacos , Triterpenos/farmacologia , Animais , Axônios/fisiologia , Diferenciação Celular/efeitos dos fármacos , Diferenciação Celular/fisiologia , Células Cultivadas , Centella , Dendritos/fisiologia , Relação Dose-Resposta a Droga , Feminino , Hipocampo/citologia , Hipocampo/fisiologia , Neurônios/patologia , Extratos Vegetais/isolamento & purificação , Extratos Vegetais/farmacologia , Gravidez , Ratos , Ratos Sprague-Dawley , Sinapses/fisiologia , Triterpenos/isolamento & purificação
14.
Phytomedicine ; 81: 153415, 2021 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-33285471

RESUMO

BACKGROUND: Neuronal excitotoxicity induces a plethora of downstream signaling pathways, resulting in the calcium overload-induced excitotoxic cell death, a well-known phenomenon in cerebrovascular and neurodegenerative disorders. The naturally occurring phytosterol, stigmasterol (ST) is known for its potential role in cholesterol homeostasis and neuronal development. However, the ability of ST to protect against the induced excitotoxicity in hippocampal neurons has not been investigated yet. PURPOSE: The present study aimed to investigate whether ST could protect against hypoxia/reoxygenation (H/R)-induced excitotoxicity in hippocampal neurons. METHODS: After H/R, neurons were initially subjected to trypan blue exclusion assay for the assessment of cell viability. Live staining using fluorescence dyes namely JC-1 (5,5',6,6'-tetrachloro-1,1',3,3'-tetraethylbenzimidazolyl-carbocyanine iodide), DCFDA (2',7'-dichlorofluorescein diacetate) and FM1-43 (N-(3-triethylammoniumpropyl)-4-(4-(dibutylamino)styryl) were used to measure MMP, ROS and synaptic vesicle pool size. Immunostaining was performed to analyze the expression levels of vesicular glutamate transporter 1 (VGLUT1), N-methyl-D-acetate receptor subunit 2B (GluN2B), LC3BII, p62, and PTEN induced protein kinase 1 (PINK1) in neuron after H/R. Western blotting was carried out to measure the protein expression of GluN2B. The molecular dynamics simulation was employed to elucidate the LXRß agonistic conformation of ST. RESULT: Pre-incubation of neuronal cultures with ST (20 µM) protected against excitotoxicity, and attenuated reactive oxygen species (ROS) generation, double-stranded DNA break, and mitochondrial membrane potential (MMP) loss. ST treatment also resulted in the downregulation of the expressions of VGLUT1 and GluN2B and the reduction of the size of recyclable synaptic vesicle (SV) pool. Like LXRß agonist GW3695, ST suppressed the expression of GluN2B. Furthermore, ST induced mitophagy through upregulating the expressions of LC3BII, p62, and PINK1. The molecular simulation study showed that ST interacted with the ligand binding domain of liver X receptor ß (LXRß), a known binding receptor of ST, through multiple hydrogen bonding. CONCLUSION: Collectively, these findings revealed that ST exhibited a promising neuroprotective effect by regulating both pre- and post-synaptic events following H/R, particularly, attenuation of GluN2B-mediated excitotoxicity and oxidative stress, and induction of mitophagy, and suggested that ST might be a therapeutic promise against ischemic stroke and its associated neurological disorders.


Assuntos
Receptores X do Fígado/agonistas , Mitofagia/efeitos dos fármacos , Neurônios/efeitos dos fármacos , Fármacos Neuroprotetores/farmacologia , Traumatismo por Reperfusão/prevenção & controle , Estigmasterol/farmacologia , Animais , Morte Celular/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Hipocampo/citologia , Hipóxia/tratamento farmacológico , Hipóxia/fisiopatologia , Receptores X do Fígado/química , Receptores X do Fígado/metabolismo , Masculino , Potencial da Membrana Mitocondrial/efeitos dos fármacos , Mitofagia/fisiologia , Simulação de Acoplamento Molecular , Neurônios/metabolismo , Neurônios/patologia , Estresse Oxidativo/efeitos dos fármacos , Ratos Sprague-Dawley , Receptores de N-Metil-D-Aspartato/metabolismo , Traumatismo por Reperfusão/metabolismo , Traumatismo por Reperfusão/patologia , Estigmasterol/química , Estigmasterol/metabolismo
15.
CNS Neurol Disord Drug Targets ; 19(7): 541-556, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32748763

RESUMO

BACKGROUND: Withania somnifera (WS), also referred to as Medhya Rasayana (nootropic or rejuvenating), has traditionally been prescribed for various neurological ailments, including dementia. Despite substantial evidence, pharmacological roles of WS, neither as nootropic nor as an antidementia agent, are well-understood at the cellular and molecular levels. OBJECTIVES: We aimed at elucidating the pharmacological action mechanisms of WS root constituents against Alzheimer's Disease (AD) pathology. METHODS: Various bioinformatics tools and resources, including DAVID, Cytoscape, NetworkAnalyst and KEGG pathway database were employed to analyze the interaction of WS root bioactive molecules with the protein targets of AD-associated cellular processes. We also used a molecular simulation approach to validate the interaction of compounds with selected protein targets. RESULTS: Network analysis revealed that ß-sitosterol, withaferin A, stigmasterol, withanolide A, and withanolide D are the major constituents of WS root that primarily target the cellular pathways such as PI3K/Akt signaling, neurotrophin signaling and toll-like receptor signaling and proteins such as Tropomyosin receptor Kinase B (TrkB), Glycogen Synthase Kinase-3ß (GSK-3ß), Toll-Like Receptor 2/4 (TLR2/4), and ß-secretase (BACE-1). Also, the in silico analysis further validated the interaction patterns and binding affinity of the major WS compounds, particularly stigmasterol, withanolide A, withanolide D and ß-sitosterol with TrkB, GSK-3ß, TLR2/4, and BACE-1. CONCLUSION: The present findings demonstrate that stigmasterol, withanolide A, withanolide D and ß-sitosterol are the major metabolites that are responsible for the neuropharmacological action of WS root against AD-associated pathobiology, and TrkB, GSK-3ß, TLR2/4, and BACE-1 could be the potential druggable targets.


Assuntos
Doença de Alzheimer/tratamento farmacológico , Extratos Vegetais/farmacologia , Withania/metabolismo , Simulação por Computador , Glicogênio Sintase Quinase 3 beta/metabolismo , Humanos , Fosfatidilinositol 3-Quinases/metabolismo , Sitosteroides , Withania/química , Vitanolídeos
16.
Mar Drugs ; 18(7)2020 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-32630301

RESUMO

Beyond their significant contribution to the dietary and industrial supplies, marine algae are considered to be a potential source of some unique metabolites with diverse health benefits. The pharmacological properties, such as antioxidant, anti-inflammatory, cholesterol homeostasis, protein clearance and anti-amyloidogenic potentials of algal metabolites endorse their protective efficacy against oxidative stress, neuroinflammation, mitochondrial dysfunction, and impaired proteostasis which are known to be implicated in the pathophysiology of neurodegenerative disorders and the associated complications after cerebral ischemia and brain injuries. As was evident in various preclinical studies, algal compounds conferred neuroprotection against a wide range of neurotoxic stressors, such as oxygen/glucose deprivation, hydrogen peroxide, glutamate, amyloid ß, or 1-methyl-4-phenylpyridinium (MPP+) and, therefore, hold therapeutic promise for brain disorders. While a significant number of algal compounds with promising neuroprotective capacity have been identified over the last decades, a few of them have had access to clinical trials. However, the recent approval of an algal oligosaccharide, sodium oligomannate, for the treatment of Alzheimer's disease enlightened the future of marine algae-based drug discovery. In this review, we briefly outline the pathophysiology of neurodegenerative diseases and brain injuries for identifying the targets of pharmacological intervention, and then review the literature on the neuroprotective potentials of algal compounds along with the underlying pharmacological mechanism, and present an appraisal on the recent therapeutic advances. We also propose a rational strategy to facilitate algal metabolites-based drug development.


Assuntos
Fármacos Neuroprotetores/química , Fármacos Neuroprotetores/farmacologia , Alga Marinha/química , Organismos Aquáticos , Doenças do Sistema Nervoso Central/tratamento farmacológico , Humanos , Fitoterapia
17.
Phytomedicine ; 69: 153201, 2020 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-32276177

RESUMO

BACKGROUND: Marine algae are rich in some unique biologically active secondary metabolites having diverse pharmacological benefits. Of these, sterols comprise a group of functional lipid compounds that have attracted much attention to natural product scientists. PURPOSE: This review was aimed to update information on the health effects of algae-derived phytosterols and their molecular interactions in various aspects of human health and diseases and to address some future perspectives that may open up a new dimension of pharmacological potentials of algal sterols. METHODS: A literature-based search was carried out to retrieve published research information on the potential health effects of algal phytosterols with their pharmacological mechanisms from accessible online databases, such as Pubmed, Google Scholar, Web of Science, and Scopus, using the key search terms of 'marine algae sterol' and 'health potentials such as antioxidant or anti-inflammatory or anti-Alzheimer's or anti-obesity or cholesterol homeostasis or hepatoprotective, antiproliferative, etc.' RESULTS: Phytosterols of marine algae, particularly fucosterol, have been investigated for a plethora of health benefits, including anti-diabetes, anti-obesity, anti-Alzheimer's, antiaging, anticancer, and hepatoprotection, among many others, which are attributed to their antioxidant, anti-inflammatory, immunomodulatory and cholesterol-lowering properties, indicating their potentiality as therapeutic leads. These sterols interact with enzymes and various other proteins that are actively participating in different cellular pathways, including antioxidant defense system, apoptosis and cell survival, metabolism, and homeostasis. CONCLUSION: In this review, we briefly overview the chemistry, pharmacokinetics, and distribution of algal sterols, and provide critical insights into their potential health effects and the underlying pharmacological mechanisms, beyond the well-known cholesterol-lowering paradigm.


Assuntos
Fitosteróis/química , Fitosteróis/farmacologia , Alga Marinha/química , Anti-Inflamatórios/química , Anti-Inflamatórios/farmacologia , Antioxidantes/química , Antioxidantes/farmacologia , Organismos Aquáticos , Colesterol/metabolismo , Humanos , Phaeophyceae/química , Fitosteróis/análise , Fitosteróis/farmacocinética , Rodófitas/química , Estigmasterol/análogos & derivados , Estigmasterol/farmacologia , Distribuição Tecidual
18.
J Mol Model ; 25(4): 98, 2019 Mar 23.
Artigo em Inglês | MEDLINE | ID: mdl-30904971

RESUMO

Vascular endothelial growth factor receptor-2 (VEGFR-2) is one of the regulatory elements of angiogenesis that is expressed highly in various diseases and is also essential for solid tumor growth. The present study was aimed at identifying potent inhibitors of VEGFR-2 by considering herbal secondary metabolites; as natural molecules are less toxic than synthetic derivatives. A structure-based virtual screening protocol consisting of molecular docking, MM-GBSA and ADME/T analysis was initially used to screen a library of in vivo metabolites of the herbal ingredient. Using a fixed cutoff value, four potent virtual hits were identified from molecular docking, ADME/T and binding affinity calculations, which were considered further for molecular dynamics (MD) simulation to broadly describe the binding mechanisms to VEGFR-2. The results suggested that these molecules have high affinity for the catalytic region of VEGFR-2, and form strong hydrophobic and polar interactions with the amino acids involved in the binding site of ATP and linker regions of the catalytic site. Subsequently, the stability of the docked complexes and binding mechanisms were evaluated by MD simulations, and the energy of binding was calculated through MM-PBSA analysis. The results uncovered two virtual hits, designated ZINC14762520 and ZINC36470466, as VEGFR-2 inhibitors, and suggested that they bind to kinase domain in an ATP-competitive manner. These virtual hits will offer a suitable starting point for the further design of their various analogs, allowing a rational search for more effective inhibitors in the future. Graphical abstract.


Assuntos
Inibidores da Angiogênese/química , Extratos Vegetais/química , Inibidores de Proteínas Quinases/química , Receptor 2 de Fatores de Crescimento do Endotélio Vascular/química , Inibidores da Angiogênese/farmacologia , Bases de Dados de Produtos Farmacêuticos , Humanos , Conformação Molecular , Simulação de Acoplamento Molecular , Simulação de Dinâmica Molecular , Extratos Vegetais/farmacologia , Ligação Proteica , Inibidores de Proteínas Quinases/farmacologia , Relação Estrutura-Atividade , Receptor 2 de Fatores de Crescimento do Endotélio Vascular/antagonistas & inibidores
19.
Curr Pharm Des ; 24(33): 3972-3979, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30398111

RESUMO

BACKGROUND: Alzheimer disease (AD) can be considered as the most common age related neurodegenerative disorder and also an important cause of death in elderly patients. A number of studies showed the correlation of this disease pathology with BACE1 inhibitor and it is also evident that BACE1 inhibitor can function as a very potent strategy in treating AD. METHODS: In this present study, we aimed to prospect for novel plant-derived BACE1 inhibitors from Leea indica and to realise structural basis of their interactions and mechanisms using combined molecular docking and molecular dynamics based approaches. An extensive library of Leea indica plant derived molecule was compiled and computationally screened for inhibitory action against BACE1 by using virtual screening approaches. Furthermore, induced fit docking and classical molecular dynamics along with steered molecular dynamics simulations were employed to get insight of the binding mechanisms. RESULTS: Two triterpenoids, ursolic acid and lupeol were identified through virtual screening; wherein, lupeol showed better binding free energy in MM/GBSA, MM/PBSA and MM/GBVI approaches. Furthermore classical and steered dynamics revealed the favourable hydrophobic interactions between the lupeol and the residues of flap or catalytic dyadof BACE1; however, ursolic acid showed disfavorable interactions with the BACE1. CONCLUSION: This study therefore unveiled the potent BACE1 inhibitor from a manually curated dataset of Leea indica molecules, which may provide a novel dimension of designing novel BACE1 inhibitors for AD therapy.


Assuntos
Secretases da Proteína Precursora do Amiloide/antagonistas & inibidores , Ácido Aspártico Endopeptidases/antagonistas & inibidores , Inibidores Enzimáticos/farmacologia , Triterpenos Pentacíclicos/farmacologia , Extratos Vegetais/farmacologia , Triterpenos/farmacologia , Vitaceae/química , Secretases da Proteína Precursora do Amiloide/metabolismo , Ácido Aspártico Endopeptidases/metabolismo , Relação Dose-Resposta a Droga , Avaliação Pré-Clínica de Medicamentos , Inibidores Enzimáticos/química , Inibidores Enzimáticos/isolamento & purificação , Humanos , Modelos Moleculares , Triterpenos Pentacíclicos/química , Triterpenos Pentacíclicos/isolamento & purificação , Extratos Vegetais/química , Extratos Vegetais/isolamento & purificação , Relação Estrutura-Atividade , Termodinâmica , Triterpenos/química , Triterpenos/isolamento & purificação , Ácido Ursólico
20.
Artigo em Inglês | MEDLINE | ID: mdl-29681985

RESUMO

Among all types of cancer, breast cancer is one of the most challenging diseases, which is responsible for a large number of cancer related deaths. Hormonal therapy, surgery, chemotherapy, and radiotherapy have been used as treatment of breast cancer, for a very long time. Due to severe side effects and multidrug resistance, these treatment approaches become increasingly ineffective. However, adoption of complementary treatment approach can be a big solution for this situation, as it is evident that compounds derived from natural source have a great deal of anticancer activity. Natural compounds can fight against aggressiveness of breast cancer, inhibit cancerous cell proliferation, and modulate cancer related pathways. A large number of research works are now focusing on the natural and dietary compounds and trying to find out new and more effective treatment strategies for the breast cancer patients. In this review, we discussed some significant natural chemical compounds with their mechanisms of actions, which can be very effective against the breast cancer and can be more potent by their proper modifications and further clinical research. Future research focusing on the natural anti-breast-cancer agents can open a new horizon in breast cancer treatment, which will play a great role in enhancing the survival rate of breast cancer patients.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA