Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Comp Med ; 71(4): 309-317, 2021 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-34187631

RESUMO

Melatonin, the circadian nighttime neurohormone, and eicosapentaenoic acid (EPA) and docosahexaenoic acids (DHA), which are omega-3 fatty acids (FA) found in high concentrations in fish oil (FO) and plants, abrogate the oncogenic effects of linoleic acid (LA), an omega-6 FA, on the growth of rodent tumors and human breast, prostate, and head and neck squamous cell carcinoma (HNSCC) xenografts in vivo. Here we determined and compared the long-term effects of these inhibitory agents on tumor regression and LA uptake and metabolism to the mitogenic agent 13-[S]-hydroxyoctadecadienoic acid (13-[S]-HODE) in human prostate cancer 3 (PC3) and FaDu HNSCC xenografts in tumor-bearing male nude rats. Rats in this study were split into 3 groups and fed one of 2 diets: one diet containing 5% corn oil (CO, high LA), 5% CO oil and melatonin (2 µg/mL) or an alternative diet 5% FO (low LA). Rats whose diet contained melatonin had a faster rate of regression of PC3 prostate cancer xenografts than those receiving the FO diet, while both in the melatonin and FO groups induced the same rate of regression of HNSCC xenografts. The results also demonstrated that dietary intake of melatonin or FO significantly inhibited tumor LA uptake, cAMP content, 13-[S]-HODE formation, [³H]-thymidine incorporation into tumor DNA, and tumor DNA content. Therefore, long-term ingestion of either melatonin or FO can induce regression of PC3 prostate and HNSCC xenografts via a mechanism involving the suppression of LA uptake and metabolism by the tumor cells.


Assuntos
Melatonina , Neoplasias , Animais , Dieta , Xenoenxertos , Humanos , Ácido Linoleico , Ácidos Linoleicos , Masculino , Ratos , Ratos Nus
2.
J Pineal Res ; 60(2): 167-77, 2016 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-26607298

RESUMO

Leiomyosarcoma (LMS) represents a highly malignant, rare soft tissue sarcoma with high rates of morbidity and mortality. Previously, we demonstrated that tissue-isolated human LMS xenografts perfused in situ are highly sensitive to the direct anticancer effects of physiological nocturnal blood levels of melatonin which inhibited tumour cell proliferative activity, linoleic acid (LA) uptake and metabolism to 13-hydroxyoctadecadienoic acid (13-HODE). Here, we show the effects of low pharmacological blood concentrations of melatonin following oral ingestion of a melatonin supplement by healthy adult human female subjects on tumour proliferative activity, aerobic glycolysis (Warburg effect) and LA metabolic signalling in tissue-isolated LMS xenografts perfused in situ with this blood. Melatonin markedly suppressed aerobic glycolysis and induced a complete inhibition of tumour LA uptake, 13-HODE release, as well as significant reductions in tumour cAMP levels, DNA content and [(3) H]-thymidine incorporation into DNA. Furthermore, melatonin completely suppressed the phospho-activation of ERK 1/2, AKT, GSK3ß and NF-kB (p65). The addition of S20928, a nonselective melatonin antagonist, reversed these melatonin inhibitory effects. Moreover, in in vitro cell culture studies, physiological concentrations of melatonin repressed cell proliferation and cell invasion. These results demonstrate that nocturnal melatonin directly inhibited tumour growth and invasion of human LMS via suppression of the Warburg effect, LA uptake and other related signalling mechanisms. An understanding of these novel signalling pathway(s) and their association with aerobic glycolysis and LA metabolism in human LMS may lead to new circadian-based therapies for the prevention and treatment of LMS and potentially other mesenchymally derived solid tumours.


Assuntos
Glicólise/efeitos dos fármacos , Leiomiossarcoma/tratamento farmacológico , Melatonina/metabolismo , Animais , Sobrevivência Celular , Feminino , Humanos , Leiomiossarcoma/metabolismo , Leiomiossarcoma/patologia , Metástase Neoplásica , Ratos , Ratos Nus , Ensaios Antitumorais Modelo de Xenoenxerto
3.
J Am Assoc Lab Anim Sci ; 45(3): 38-44, 2006 May.
Artigo em Inglês | MEDLINE | ID: mdl-16642969

RESUMO

We developed an artificial lung and catheter system for perfusing tissue-isolated tumors in situ that dramatically minimizes perfusate delivery time. Our investigations demonstrated that the circadian neurohormone melatonin (MLT), eicosapentaenoic acid (EPA), and conjugated linoleic acid (CLA) inhibit growth and metabolism in several rodent and human tumors. These anticancer agents function in a receptor-mediated manner to suppress tumor uptake of linoleic acid (LA), the principal tumor growth-promoting fatty acid, and its conversion to the mitogenic agent 13-hydroxyoctadecadienoic acid (13-HODE). Using this perfusion system and MCF-7 human breast xenografts, we examined the efficacy and timing of perfusate delivery to tumors. Tumors were perfused with rat donor blood to establish baseline LA uptake values; after 36 min of perfusion, we supplemented the perfusate with MLT, EPA, or CLA and collected arteriovenous whole-blood samples over 5-min intervals for a total perfusion period of 70 min. Arterial blood pH, pO2, and pCO2 (mean+/-33.7+/-1.9, and 59.8+/-1.9 mm Hg, respectively; none of these values varied during the perfusions. Tumor LA uptake and 13-HODE production were 1.06+/-0.28 microg/min/g and 1.38+/-0.02 ng/min/g, respectively, and were completely suppressed within 5 min after delivery of anticancer agents to the tissue. This new system provides rapid perfusate delivery for use with both normal and neoplastic tissues while maintaining normal physiologic tissue parameters.


Assuntos
Neoplasias da Mama/tratamento farmacológico , Transplante de Neoplasias/métodos , Perfusão/métodos , Transplante Heterólogo/métodos , Analgésicos/farmacologia , Animais , Neoplasias da Mama/metabolismo , Neoplasias da Mama/patologia , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Ácido Eicosapentaenoico/farmacologia , Feminino , Humanos , Ácidos Linoleicos Conjugados/farmacologia , Melatonina/farmacologia , Proteína Quinase 1 Ativada por Mitógeno/metabolismo , Ratos , Ratos Nus , Fatores de Tempo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA