Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
J Fish Dis ; 46(10): 1137-1149, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37422900

RESUMO

Biofloc technology is a rearing technique that maintains desired water quality by manipulating carbon and nitrogen and their inherent mixture of organic matter and microbes. Beneficial microorganisms in biofloc systems produce bioactive metabolites that may deter the growth of pathogenic microbes. As little is known about the interaction of biofloc systems and the addition of probiotics, this study focused on this integration to manipulate the microbial community and its interactions within biofloc systems. The present study evaluated two probiotics (B. velezensis AP193 and BiOWiSH FeedBuilder Syn 3) for use in Nile tilapia (Oreochromis niloticus) culture in a biofloc system. Nine independent 3785 L circular tanks were stocked with 120 juveniles (71.4 ± 4.4 g). Tilapia were fed for 16 weeks and randomly assigned three diets: a commercial control diet or a commercial diet top-coated with either AP193 or BiOWiSH FeedBuilder Syn3. At 14 weeks, the fish were challenged with a low dose of Streptococcus iniae (ARS-98-60, 7.2 × 107 CFU mL-1 , via intraperitoneal injection) in a common garden experimental design. At 16 weeks, the fish were challenged with a high dose of S. iniae (6.6 × 108 CFU mL-1 ) in the same manner. At the end of each challenge trial, cumulative per cent mortality, lysozyme activity and expression of 4 genes (il-1ß, il6, il8 and tnfα) from the spleen were measured. In both challenges, the mortalities of the probiotic-fed groups were significantly lower (p < .05) than in the control diet. Although there were some strong trends, probiotic applications did not result in significant immune gene expression changes related to diet during the pre-trial period and following exposure to S. iniae. Nonetheless, overall il6 expression was lower in fish challenged with a high dose of ARS-98-60, while tnfα expression was lower in fish subjected to a lower pathogen dose. Study findings demonstrate the applicability of probiotics as a dietary supplement for tilapia reared in biofloc systems.


Assuntos
Ciclídeos , Doenças dos Peixes , Probióticos , Infecções Estreptocócicas , Animais , Streptococcus iniae , Fator de Necrose Tumoral alfa , Interleucina-6 , Doenças dos Peixes/prevenção & controle , Suplementos Nutricionais , Dieta/veterinária , Ração Animal/análise , Resistência à Doença , Infecções Estreptocócicas/prevenção & controle , Infecções Estreptocócicas/veterinária
2.
Mar Life Sci Technol ; 3(4): 449-462, 2021 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37073267

RESUMO

This study evaluated the effect of dietary taurine levels on growth, serum biochemical parameters, salinity adaptability, and antioxidant activity of rainbow trout (Oncorhynchus mykiss). Four diets were formulated with taurine supplements at 0, 0.5, 1, and 2% w/v (abbreviated as T0, T0.5, T1, and T2, respectively). Rainbow trouts (initial weight of 80.09 ± 4.72 g) were stocked in tanks (180 L capacity), and were fed these diets for six weeks and subsequently underwent salinity acclimation. Physiological indicators were determined before salinity acclimation at 1, 4, 7, and 14 days afterwards. Results showed that there were no significant differences in growth performance (final mean weight ranged from 182.35 g to 198.48 g; percent weight gain was between 127.68% and 147.92%) of rainbow trout in freshwater stage, but dietary taurine supplement significantly increased serum-free taurine content. After entering seawater, the Na+-K+-ATPase activity of T2 group returned to its freshwater levels, and the serum cortisol content was significantly higher than T0 and T0.5 groups. At the end of this experiment, the liver superoxide dismutase activity in the T0 and T0.5 groups was significantly lower than in the T1 and T2 groups, and the liver catalase in the T0 group was the lowest whereas that in the T2 group was the highest. Muscle malondialdehyde content was the highest in the T0 group, and the lowest in the T2 group. Based on the results of this study, supplement of dietary taurine (0.5-2%) enhanced the salinity tolerance in rainbow trout, which increased with the higher taurine concentration.

3.
Fish Shellfish Immunol ; 46(2): 624-37, 2015 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-26164837

RESUMO

One of the highest priority areas for improvement in aquaculture is the development of dietary additives and formulations which provide for complete mucosal health and protection of fish raised in intensive systems. Far greater attention has been paid to dietary impact on gut health than to protective effects at other mucosal surfaces such as skin and gill. These exterior surfaces, however, are important primary targets for pathogen attachment and invasion. Flavobacterium columnare, the causative agent of columnaris disease, is among the most prevalent of all freshwater disease-causing bacteria, impacting global aquaculture of catfish, salmonids, baitfish and aquaria-trade species among others. This study evaluated whether the feeding of a standard catfish diet supplemented with Alltech dietary additives Actigen(®), a concentrated source of yeast cell wall-derived material and/or Allzyme(®) SSF, a fermented strain of Aspergillus niger, could offer protection against F. columnare mortality. A nine-week feeding trial of channel catfish fingerlings with basal diet (B), B + Allzyme(®) SSF, B + Actigen(®) and B + Actigen(®)+Allzyme(®) SSF revealed good growth in all conditions (FCR < 1.0), but no statistical differences in growth between the treatments were found. At nine weeks, based on pre-challenge trial results, basal, B + Actigen(®), and B + Allzyme(®) SSF groups of fish were selected for further challenges with F. columnare. Replicated challenge with a virulent F. columnare strain, revealed significantly longer median days to death in B + Allzyme(®) SSF and B + Actigen(®) when compared with the basal diet (P < 0.05) and significantly higher survival following the eight day challenge period in B + Actigen(®) when compared with the other two diets (P < 0.05). Given the superior protection provided by the B + Actigen(®) diet, we carried out transcriptomic comparison of gene expression of fish fed that diet and the basal diet before and after columnaris challenge using high-throughput RNA-seq. Pathway and enrichment analyses revealed changes in mannose receptor DEC205 and IL4 signaling at 0 h (prior to challenge) which likely explain a dramatic divergence in expression profiles between the two diets soon after pathogen challenge (8 h). Dietary mannose priming resulted in reduced expression of inflammatory cytokines, shifting response patterns instead to favor resolution and repair. Our results indicate that prebiotic dietary additives may provide protection extending beyond the gut to surface mucosa.


Assuntos
Aspergillus niger/química , Doenças dos Peixes/tratamento farmacológico , Infecções por Flavobacteriaceae/veterinária , Ictaluridae , Oligossacarídeos/metabolismo , Ração Animal/análise , Animais , Dieta/veterinária , Suplementos Nutricionais/análise , Fermentação , Doenças dos Peixes/microbiologia , Doenças dos Peixes/mortalidade , Infecções por Flavobacteriaceae/tratamento farmacológico , Infecções por Flavobacteriaceae/microbiologia , Infecções por Flavobacteriaceae/mortalidade , Flavobacterium/fisiologia , Expressão Gênica , Sequenciamento de Nucleotídeos em Larga Escala/veterinária , Mananas/administração & dosagem , Mananas/metabolismo , Oligossacarídeos/administração & dosagem
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA