Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Assay Drug Dev Technol ; 11(9-10): 532-43, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-24266659

RESUMO

The inward rectifier potassium (Kir) channel Kir4.1 plays essential roles in modulation of neurotransmission and renal sodium transport and may represent a novel drug target for temporal lobe epilepsy and hypertension. The molecular pharmacology of Kir4.1 is limited to neurological drugs, such as fluoxetine (Prozac(©)), exhibiting weak and nonspecific activity toward the channel. The development of potent and selective small-molecule probes would provide critically needed tools for exploring the integrative physiology and therapeutic potential of Kir4.1. A fluorescence-based thallium (Tl(+)) flux assay that utilizes a tetracycline-inducible T-Rex-HEK293-Kir4.1 cell line to enable high-throughput screening (HTS) of small-molecule libraries was developed. The assay is dimethyl sulfoxide tolerant and exhibits robust screening statistics (Z'=0.75±0.06). A pilot screen of 3,655 small molecules and lipids revealed 16 Kir4.1 inhibitors (0.4% hit rate). 3,3-Diphenyl-N-(1-phenylethyl)propan-1-amine, termed VU717, inhibits Kir4.1-mediated thallium flux with an IC50 of ∼6 µM. An automated patch clamp assay using the IonFlux HT workbench was developed to facilitate compound characterization. Leak-subtracted ensemble "loose patch" recordings revealed robust tetracycline-inducible and Kir4.1 currents that were inhibited by fluoxetine (IC50=10 µM), VU717 (IC50=6 µM), and structurally related calcium channel blocker prenylamine (IC50=6 µM). Finally, we demonstrate that VU717 inhibits Kir4.1 channel activity in cultured rat astrocytes, providing proof-of-concept that the Tl(+) flux and IonFlux HT assays can enable the discovery of antagonists that are active against native Kir4.1 channels.


Assuntos
Astrócitos/fisiologia , Citometria de Fluxo/métodos , Técnicas de Patch-Clamp/métodos , Bloqueadores dos Canais de Potássio/farmacologia , Canais de Potássio Corretores do Fluxo de Internalização/fisiologia , Espectrometria de Fluorescência/métodos , Animais , Astrócitos/efeitos dos fármacos , Células Cultivadas , Avaliação Pré-Clínica de Medicamentos/métodos , Análise de Injeção de Fluxo/métodos , Células HEK293 , Humanos , Ativação do Canal Iônico/efeitos dos fármacos , Ativação do Canal Iônico/fisiologia , Canais de Potássio Corretores do Fluxo de Internalização/antagonistas & inibidores , Ratos , Ratos Sprague-Dawley
2.
ACS Chem Neurosci ; 4(9): 1278-86, 2013 Sep 18.
Artigo em Inglês | MEDLINE | ID: mdl-23730969

RESUMO

The G-protein activated, inward-rectifying potassium (K(+)) channels, "GIRKs", are a family of ion channels (Kir3.1-Kir3.4) that has been the focus of intense research interest for nearly two decades. GIRKs are comprised of various homo- and heterotetrameric combinations of four different subunits. These subunits are expressed in different combinations in a variety of regions throughout the central nervous system and in the periphery. The body of GIRK research implicates GIRK in processes as diverse as controlling heart rhythm, to effects on reward/addiction, to modulation of response to analgesics. Despite years of GIRK research, very few tools exist to selectively modulate GIRK channels' activity and until now no tools existed that potently and selectively activated GIRKs. Here we report the development and characterization of the first truly potent, effective, and selective GIRK activator, ML297 (VU0456810). We further demonstrate that ML297 is active in two in vivo models of epilepsy, a disease where up to 40% of patients remain with symptoms refractory to present treatments. The development of ML297 represents a truly significant advancement in our ability to selectively probe GIRK's role in physiology as well as providing the first tool for beginning to understand GIRK's potential as a target for a diversity of therapeutic indications.


Assuntos
Anticonvulsivantes/uso terapêutico , Canais de Potássio Corretores do Fluxo de Internalização Acoplados a Proteínas G/agonistas , Compostos de Fenilureia/uso terapêutico , Pirazóis/uso terapêutico , Convulsões/tratamento farmacológico , Animais , Anticonvulsivantes/administração & dosagem , Anticonvulsivantes/química , Anticonvulsivantes/farmacologia , Sinalização do Cálcio/efeitos dos fármacos , Relação Dose-Resposta a Droga , Avaliação Pré-Clínica de Medicamentos , Eletrochoque/efeitos adversos , Células HEK293 , Ensaios de Triagem em Larga Escala , Humanos , Injeções Intraperitoneais , Camundongos , Microssomos Hepáticos/metabolismo , Estrutura Molecular , Técnicas de Patch-Clamp , Pentilenotetrazol/toxicidade , Compostos de Fenilureia/administração & dosagem , Compostos de Fenilureia/química , Compostos de Fenilureia/farmacologia , Pirazóis/administração & dosagem , Pirazóis/química , Pirazóis/farmacologia , Ratos , Receptores de Glutamato Metabotrópico/efeitos dos fármacos , Proteínas Recombinantes/efeitos dos fármacos , Convulsões/etiologia , Ácido Valproico/uso terapêutico
3.
ACS Chem Biol ; 6(5): 452-65, 2011 May 20.
Artigo em Inglês | MEDLINE | ID: mdl-21241068

RESUMO

E-cadherin is a transmembrane protein that maintains intercellular contacts and cell polarity in epithelial tissue. The down-regulation of E-cadherin contributes to the induction of the epithelial-to-mesenchymal transition (EMT), resulting in an increased potential for cellular invasion of surrounding tissues and entry into the bloodstream. Loss of E-cadherin has been observed in a variety of human tumors as a result of somatic mutations, chromosomal deletions, silencing of the CDH1 gene promoter, and proteolytic cleavage. To date, no compounds directly targeting E-cadherin restoration have been developed. Here, we report the development and use of a novel high-throughput immunofluorescent screen to discover lead compounds that restore E-cadherin expression in the SW620 colon adenocarcinoma cell line. We confirmed restoration of E-cadherin using immunofluorescent microscopy and were able to determine the EC(50) for selected compounds using an optimized In-Cell Western assay. The profiled compounds were also shown to have a minimal effect on cell proliferation but did decrease cellular invasion. We have also conducted preliminary investigations to elucidate a discrete molecular target to account for the phenotypic behavior of these small molecules and have noted a modest increase in E-cadherin mRNA transcripts, and RNA-Seq analysis demonstrated that potent analogues elicited a 10-fold increase in CDH1 (E-cadherin) gene expression.


Assuntos
Caderinas/biossíntese , Neoplasias Colorretais/metabolismo , Neoplasias Colorretais/patologia , Invasividade Neoplásica/prevenção & controle , Caderinas/genética , Linhagem Celular Tumoral , Avaliação Pré-Clínica de Medicamentos/métodos , Transição Epitelial-Mesenquimal , Humanos , RNA Mensageiro/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA