Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Medicinas Complementares
Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
J Neurosurg ; 134(3): 1072-1082, 2020 Mar 06.
Artigo em Inglês | MEDLINE | ID: mdl-32114534

RESUMO

OBJECTIVE: Deep brain stimulation (DBS) lead placement is increasingly performed with the patient under general anesthesia by surgeons using intraoperative MRI (iMRI) guidance without microelectrode recording (MER) or macrostimulation. The authors assessed the accuracy of lead placement, safety, and motor outcomes in patients with Parkinson disease (PD) undergoing DBS lead placement into the globus pallidus internus (GPi) using iMRI or MER guidance. METHODS: The authors identified all patients with PD who underwent either MER- or iMRI-guided GPi-DBS lead placement at Emory University between July 2007 and August 2016. Lead placement accuracy and adverse events were determined for all patients. Clinical outcomes were assessed using the Unified Parkinson's Disease Rating Scale (UPDRS) part III motor scores for patients completing 12 months of follow-up. The authors also assessed the levodopa-equivalent daily dose (LEDD) and stimulation parameters. RESULTS: Seventy-seven patients were identified (MER, n = 28; iMRI, n = 49), in whom 131 leads were placed. The stereotactic accuracy of the surgical procedure with respect to the planned lead location was 1.94 ± 0.21 mm (mean ± SEM) (95% CI 1.54-2.34) with frame-based MER and 0.84 ± 0.007 mm (95% CI 0.69-0.98) with iMRI. The rate of serious complications was similar, at 6.9% for MER-guided DBS lead placement and 9.4% for iMRI-guided DBS lead placement (RR 0.71 [95% CI 0.13%-3.9%]; p = 0.695). Fifty-seven patients were included in clinical outcome analyses (MER, n = 16; iMRI, n = 41). Both groups had similar characteristics at baseline, although patients undergoing MER-guided DBS had a lower response on their baseline levodopa challenge (44.8% ± 5.4% [95% CI 33.2%-56.4%] vs 61.6% ± 2.1% [95% CI 57.4%-65.8%]; t = 3.558, p = 0.001). Greater improvement was seen following iMRI-guided lead placement (43.2% ± 3.5% [95% CI 36.2%-50.3%]) versus MER-guided lead placement (25.5% ± 6.7% [95% CI 11.1%-39.8%]; F = 5.835, p = 0.019). When UPDRS III motor scores were assessed only in the contralateral hemibody (per-lead analyses), the improvements remained significantly different (37.1% ± 7.2% [95% CI 22.2%-51.9%] and 50.0% ± 3.5% [95% CI 43.1%-56.9%] for MER- and iMRI-guided DBS lead placement, respectively). Both groups exhibited similar reductions in LEDDs (21.2% and 20.9%, respectively; F = 0.221, p = 0.640). The locations of all active contacts and the 2D radial distance from these to consensus coordinates for GPi-DBS lead placement (x, ±20; y, +2; and z, -4) did not differ statistically by type of surgery. CONCLUSIONS: iMRI-guided GPi-DBS lead placement in PD patients was associated with significant improvement in clinical outcomes, comparable to those observed following MER-guided DBS lead placement. Furthermore, iMRI-guided DBS implantation produced a similar safety profile to that of the MER-guided procedure. As such, iMRI guidance is an alternative to MER guidance for patients undergoing GPi-DBS implantation for PD.


Assuntos
Estimulação Encefálica Profunda/métodos , Globo Pálido , Imageamento por Ressonância Magnética/métodos , Microeletrodos , Doença de Parkinson/terapia , Idoso , Antiparkinsonianos/uso terapêutico , Estimulação Encefálica Profunda/efeitos adversos , Eletrodos Implantados , Feminino , Humanos , Período Intraoperatório , Levodopa/uso terapêutico , Masculino , Pessoa de Meia-Idade , Doença de Parkinson/cirurgia , Complicações Pós-Operatórias/epidemiologia , Estudos Retrospectivos , Núcleo Subtalâmico/cirurgia , Tálamo/cirurgia , Resultado do Tratamento
2.
Ann N Y Acad Sci ; 1265: 1-8, 2012 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-22823512

RESUMO

Deep brain stimulation (DBS) was introduced as a treatment for patients with parkinsonism and other movement disorders in the early 1990s. The technique rapidly became the treatment of choice for these conditions, and is now also being explored for other diseases, including Tourette syndrome, gait disorders, epilepsy, obsessive-compulsive disorder, and depression. Although the mechanism of action of DBS remains unclear, it is recognized that DBS works through focal modulation of functionally specific circuits. The fact that the same DBS parameters and targets can be used in multiple diseases suggests that DBS does not counteract the pathophysiology of any specific disorder, but acts to replace pathologic activities in disease-affected brain circuits with activity that is more easily tolerated. Despite the progress made in the use of DBS, much remains to be done to fully realize the potential of this therapy. We describe some of the most active areas of research in this field, both in terms of exploration of new targets and stimulation parameters, and in terms of new electrode or stimulator designs.


Assuntos
Estimulação Encefálica Profunda/métodos , Transtornos dos Movimentos/terapia , Doenças do Sistema Nervoso/terapia , Gânglios da Base/fisiopatologia , Estimulação Encefálica Profunda/tendências , Transtorno Depressivo/fisiopatologia , Transtorno Depressivo/terapia , Humanos , Modelos Neurológicos , Córtex Motor/fisiopatologia , Transtornos dos Movimentos/fisiopatologia , Rede Nervosa/fisiologia , Doenças do Sistema Nervoso/fisiopatologia , Transtorno Obsessivo-Compulsivo/fisiopatologia , Transtorno Obsessivo-Compulsivo/terapia , Doença de Parkinson/fisiopatologia , Doença de Parkinson/terapia , Tálamo/fisiopatologia
3.
Mov Disord ; 19(8): 907-15, 2004 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-15300655

RESUMO

High frequency (>100Hz) electrical stimulation in both the external (GPe) and internal (GPi) segments of the globus pallidus was effective in improving parkinsonian motor signs. Improvement generally occurred at short latency (<5-10 seconds) in both GPe and GPi but was often (50% of the time) delayed in GPi. Dyskinetic movements were observed during stimulation within GPe and GPi but were more frequent in GPe (20% vs. 9%). These findings suggest that electrical stimulation in both GPe and GPi may ameliorate parkinsonian motor signs. The mechanisms responsible for these observations, however, may differ. The tendency for delayed responses with GPi stimulation suggests a more complex spatial-temporal profile of stimulation on the electrical activity of GPi neurons and/or its effect on network activity in pallido-thalamo-cortical circuitry. The rarity of delayed effects with GPe stimulation suggests a more direct role of synaptic inhibition or normalization of neuronal activity of GPi either directly by means of activation of striatopallidal fibers passing through GPe (direct pathway), by means of activation of GPe-->GPi or GPe-->subthalamic nucleus projections (indirect pathway) or indirectly by means of the tonic activation of adjacent fiber pathways. These data provide a rationale for the exploration of electrical stimulation in GPe in patients with medically intractable Parkinson's disease and provide a basis on which to develop further investigations into the use of chronic electrical stimulation for the treatment of Parkinson's disease and other movement disorders.


Assuntos
Discinesias/terapia , Terapia por Estimulação Elétrica , Globo Pálido/efeitos da radiação , Atividade Motora/efeitos da radiação , Doença de Parkinson/terapia , Mapeamento Encefálico , Relação Dose-Resposta à Radiação , Discinesias/etiologia , Estimulação Elétrica/métodos , Feminino , Lateralidade Funcional , Globo Pálido/anatomia & histologia , Globo Pálido/fisiologia , Humanos , Masculino , Redes Neurais de Computação , Doença de Parkinson/complicações , Tempo de Reação/efeitos da radiação , Estudos Retrospectivos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA