Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Métodos Terapêuticos e Terapias MTCI
Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Nat Prod Res ; 36(17): 4421-4425, 2022 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-34541973

RESUMO

This study reports the influence of seasonality on the accumulation of verbascoside as a principal phenolic compound in Clerodendrum glandulosum Lindl. leaves along with possible alteration of antioxidant potentials. Leaves were collected during winter (December 2018), spring (February 2019), summer (May 2019), monsoon (July 2019), autumn (October 2019), and extracted with 95% aqueous methanol by cold maceration. The total phenolic content and antioxidant capacities (DPPH, ABTS and FRAP) were estimated by spectrophotometric technique, and verbascoside content was estimated by HPLC-PDA. Results indicate that the leaves collected during summer and winter both exhibited the highest total phenolic content verbascoside accumulation and antioxidant potentials which are significantly different (p < 0.05) than other seasons. Correlation studies further demonstrated that the total polyphenol and verbascoside contents were directly proportional to the antioxidant potentials. Thus, the study concludes that winter and summer are the best seasons for collecting leaves from this plant to obtain maximum antioxidant potential.


Assuntos
Antioxidantes , Clerodendrum , Antioxidantes/química , Glucosídeos , Extratos Vegetais/química , Folhas de Planta/química , Polifenóis , Estações do Ano
2.
Molecules ; 26(13)2021 Jun 30.
Artigo em Inglês | MEDLINE | ID: mdl-34209338

RESUMO

Flavonoids comprise a large group of structurally diverse polyphenolic compounds of plant origin and are abundantly found in human diet such as fruits, vegetables, grains, tea, dairy products, red wine, etc. Major classes of flavonoids include flavonols, flavones, flavanones, flavanols, anthocyanidins, isoflavones, and chalcones. Owing to their potential health benefits and medicinal significance, flavonoids are now considered as an indispensable component in a variety of medicinal, pharmaceutical, nutraceutical, and cosmetic preparations. Moreover, flavonoids play a significant role in preventing cardiovascular diseases (CVDs), which could be mainly due to their antioxidant, antiatherogenic, and antithrombotic effects. Epidemiological and in vitro/in vivo evidence of antioxidant effects supports the cardioprotective function of dietary flavonoids. Further, the inhibition of LDL oxidation and platelet aggregation following regular consumption of food containing flavonoids and moderate consumption of red wine might protect against atherosclerosis and thrombosis. One study suggests that daily intake of 100 mg of flavonoids through the diet may reduce the risk of developing morbidity and mortality due to coronary heart disease (CHD) by approximately 10%. This review summarizes dietary flavonoids with their sources and potential health implications in CVDs including various redox-active cardioprotective (molecular) mechanisms with antioxidant effects. Pharmacokinetic (oral bioavailability, drug metabolism), toxicological, and therapeutic aspects of dietary flavonoids are also addressed herein with future directions for the discovery and development of useful drug candidates/therapeutic molecules.


Assuntos
Antioxidantes , Cardiotônicos , Doenças Cardiovasculares , Flavonoides , Frutas/química , Verduras/química , Antioxidantes/química , Antioxidantes/farmacocinética , Antioxidantes/uso terapêutico , Disponibilidade Biológica , Cardiotônicos/química , Cardiotônicos/farmacocinética , Doenças Cardiovasculares/metabolismo , Doenças Cardiovasculares/patologia , Doenças Cardiovasculares/prevenção & controle , Flavonoides/química , Flavonoides/farmacocinética , Flavonoides/uso terapêutico , Humanos
3.
Pharmacol Res ; 129: 227-236, 2018 03.
Artigo em Inglês | MEDLINE | ID: mdl-29175114

RESUMO

Murraya koenigii, a plant belonging to the Rutaceae family is widely distributed in Eastern-Asia and its medicinal properties are well documented in Ayurveda, the traditional Indian system of medicine. Through systematic research and pharmacological evaluation of different parts of the plant extracts has been shown to possess antiviral, anti-inflammatory, antioxidant, antidiabetic, antidiarrhoeal, antileishmanial, and antitumor activity. In the plant extracts, carbazole alkaloid, mahanine has been identified as the principle bioactive component among several other chemical constituents. Scientific evidence derived not only from in vitro cellular experiments but also from in vivo studies in various cancer models is accumulating for the pronounced anticancer effects of mahanine. The primary objective of this review is to summarize research data on cytotoxic chemical constituents present in different parts of Murraya koenigii and the anticancer activity of mahanine along with the recent understanding on the mechanism of its action in diverse cancer models. The information on its bioavailability and the toxicity generated from the recent studies have also been incorporated in the review.


Assuntos
Antineoplásicos , Carbazóis , Murraya , Compostos Fitoquímicos , Animais , Antineoplásicos/análise , Antineoplásicos/farmacologia , Antineoplásicos/uso terapêutico , Carbazóis/análise , Carbazóis/farmacologia , Carbazóis/uso terapêutico , Humanos , Murraya/química , Compostos Fitoquímicos/análise , Compostos Fitoquímicos/farmacologia , Compostos Fitoquímicos/uso terapêutico , Extratos Vegetais/química , Extratos Vegetais/farmacologia , Extratos Vegetais/uso terapêutico
4.
Phytomedicine ; 33: 14-20, 2017 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-28887915

RESUMO

BACKGROUND: Neanotis wightiana (Wall. ex Wight & Arn) W.H. Lewis has been used in traditional medicine in India for the treatment of liver disorders. In fact, this plant is frequently used by the local people of Tripura for the treatment of liver disorder problems. In previous study on this plant we have isolated a hepatoprotective saponin, neanoside A. PURPOSE: Evaluation of in vivo hepatoprotective effects of isolated compounds from N. wightiana aerial parts on serum hepatic-biomarkers in CCl4- induced hepatotoxicity in rats to validate the traditional use of the plant. STUDY DESIGN: This study was designed to isolate more hepatoprotective compounds from N. wightiana aerial parts and evaluate their in vivo hepatoprotective activity in animal model. METHODS: The phytochemicals from the polar n-butanol fraction of methanolic extract of N. wightiana aerial parts were isolated by repeated column chromatography over Diaion HP-20 and silica gel. Among the isolated three compounds, two were known triterpenoids, ursolic acid and oleanolic acid. The new compound was named neanoside B and its structure was established as naphthalene diglucoside 1 on the basis of extensive spectroscopic (including 2D NMR) analysis. Furthermore, the hepatoprotective activity of 1 was evaluated on CCl4 -induced hepatic injured rats by oral administration at three doses (5, 10 mg and 20 mg/kg) for 7 d and the assay of serum hepatic injury marker enzymes, SGPT, SGOT, ALP and bilirubin contents and histopathological changes of injured liver tissue after 7 d The herbal hepatoprotective drug, silymarin (100 mg/kg) was as positive control. RESULTS: The structure of the new compound, neanoside B (1) was elucidated as 1,4-dihydroxy-2-(methoxymethyl)naphthalen-3-yl-methyl-3-ß-d-glucopyranosyl-(1→6)-ß-d-glucopyranoside on the basis of extensive spectroscopic (including 2D-NMR) and chemical studies. The compound 1 exhibited significant in vivo hepatoprotective effect at the tested doses of 5, 10 and 20 mg/kg bw in CCl4-induced hepatotoxicity in rats. In a dose-dependent manner, 1 normalized the elevated levels of hepatic injury marker enzymes, serum glutamic oxaloacetic transaminase (SGOT), serum glutamic pyruvic transaminase (SGPT), alkaline phosphatase (ALP) and total bilirubin and ameliorated the damage of liver tissue by reducing the necrosis and vacuoles. Possibly compound 1 ameliorated the hepatic damage in hepatotoxic rats by improving the antioxidant status. The higher dose (20 mg/kg) showed more hepatoprotective effect by reducing the elevated levels of SGPT, SGOT, ALP and bilirubin content to 388.5 ± 2.156, 160.7 ± 3.00, 198.6 ± 4.562 and 0.652 ± 0.036 IU/ml, respectively, compared to the levels in the control group (583.2 ± 6.922, 324.6 ± 4.711, 263.9 ± 4.939 and 1.533 ± 0.042 IU/ml, respectively) and the effect was comparable to that of the positive control silymarin (100 mg/kg bw) (389.4 ± 6.348, 167.9 ± 4.289, 203.3 ± 4.448 and 0.816 ± 0.030 IU/ml, respectively). CONCLUSIONS: This study indicated that isolated neanoside B (1) from Neanotis wightiana could be a potential drug in liver disorders. Further study in pharmacokinetics and long-term toxicity of compound 1 is requested for its clinical setting as effective drug in liver disorders.


Assuntos
Doença Hepática Induzida por Substâncias e Drogas/tratamento farmacológico , Naftalenos/farmacologia , Extratos Vegetais/farmacologia , Rubiaceae/química , Alanina Transaminase/sangue , Fosfatase Alcalina/sangue , Animais , Aspartato Aminotransferases/sangue , Bilirrubina/sangue , Dissacarídeos/isolamento & purificação , Dissacarídeos/farmacologia , Índia , Fígado/efeitos dos fármacos , Masculino , Medicina Tradicional , Naftalenos/isolamento & purificação , Naftóis/isolamento & purificação , Naftóis/farmacologia , Fitoterapia , Componentes Aéreos da Planta/química , Substâncias Protetoras/farmacologia , Ratos , Ratos Endogâmicos Lew , Silimarina/farmacologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA