Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Medicinas Complementares
Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Glia ; 69(1): 42-60, 2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-32659044

RESUMO

In humans, obesity is associated with brain inflammation, glial reactivity, and immune cells infiltration. Studies in rodents have shown that glial reactivity occurs within 24 hr of high-fat diet (HFD) consumption, long before obesity development, and takes place mainly in the hypothalamus (HT), a crucial brain structure for controlling body weight. Here, we sought to characterize the postprandial HT inflammatory response to 1, 3, and 6 hr of exposure to either a standard diet (SD) or HFD. HFD exposure increased gene expression of astrocyte and microglial markers (glial fibrillary acidic protein [GFAP] and Iba1, respectively) compared to SD-treated mice and induced morphological modifications of microglial cells in HT. This remodeling was associated with higher expression of inflammatory genes and differential regulation of hypothalamic neuropeptides involved in energy balance regulation. DREADD and PLX5622 technologies, used to modulate GFAP-positive or microglial cells activity, respectively, showed that both glial cell types are involved in hypothalamic postprandial inflammation, with their own specific kinetics and reactiveness to ingested foods. Thus, recurrent exacerbated postprandial inflammation in the brain might promote obesity and needs to be characterized to address this worldwide crisis.


Assuntos
Gorduras na Dieta , Microglia , Animais , Dieta Hiperlipídica/efeitos adversos , Proteína Glial Fibrilar Ácida , Hipotálamo , Inflamação , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Obesidade
2.
Science ; 325(5948): 1688-92, 2009 Sep 25.
Artigo em Inglês | MEDLINE | ID: mdl-19779199

RESUMO

Metabolic plasticity, which largely relies on the creation of new genes, is an essential feature of plant adaptation and speciation and has led to the evolution of large gene families. A typical example is provided by the diversification of the cytochrome P450 enzymes in plants. We describe here a retroposition, neofunctionalization, and duplication sequence that, via selective and local amino acid replacement, led to the evolution of a novel phenolic pathway in Brassicaceae. This pathway involves a cascade of six successive hydroxylations by two partially redundant cytochromes P450, leading to the formation of N1,N5-di(hydroxyferuloyl)-N10-sinapoylspermidine, a major pollen constituent and so-far-overlooked player in phenylpropanoid metabolism. This example shows how positive Darwinian selection can favor structured clusters of nonsynonymous substitutions that are needed for the transition of enzymes to new functions.


Assuntos
Brassicaceae/metabolismo , Sistema Enzimático do Citocromo P-450/metabolismo , Evolução Molecular , Pólen/crescimento & desenvolvimento , Espermidina/análogos & derivados , Arabidopsis/genética , Arabidopsis/metabolismo , Sequência de Bases , Brassica napus/genética , Brassica napus/crescimento & desenvolvimento , Brassica napus/metabolismo , Brassicaceae/genética , Brassicaceae/crescimento & desenvolvimento , Sistema Enzimático do Citocromo P-450/química , Sistema Enzimático do Citocromo P-450/genética , Duplicação Gênica , Hidroxilação , Redes e Vias Metabólicas , Metilação , Modelos Moleculares , Dados de Sequência Molecular , Proteínas de Plantas/química , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Pólen/metabolismo , Interferência de RNA , Retroelementos , Seleção Genética , Espermidina/metabolismo
3.
Plant J ; 58(2): 246-59, 2009 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-19077165

RESUMO

BAHD acyltransferases catalyze the acylation of many plant secondary metabolites. We characterized the function of At2g19070, a member of the BAHD gene family of Arabidopsis thaliana. The acyltransferase gene was shown to be specifically expressed in anther tapetum cells in the early stages of flower development. The impact of gene repression was studied in RNAi plants and in a knockout (KO) mutant line. Immunoblotting with a specific antiserum raised against the recombinant protein was used to evaluate the accumulation of At2g19070 gene product in flowers of various Arabidopsis genotypes including the KO and RNAi lines, the male sterile mutant ms1 and transformants overexpressing the acyltransferase gene. Metabolic profiling of flower bud tissues from these genetic backgrounds demonstrated a positive correlation between the accumulation of acyltransferase protein and the quantities of metabolites that were putatively identified by tandem mass spectrometry as N(1),N(5),N(10)-trihydroxyferuloyl spermidine and N(1),N(5)-dihydroxyferuloyl-N(10)-sinapoyl spermidine. These products, deposited in pollen coat, can be readily extracted by pollen wash and were shown to be responsible for pollen autofluorescence. The activity of the recombinant enzyme produced in bacteria was assayed with various hydroxycinnamoyl-CoA esters and polyamines as donor and acceptor substrates, respectively. Feruloyl-CoA and spermidine proved the best substrates, and the enzyme has therefore been named spermidine hydroxycinnamoyl transferase (SHT). A methyltransferase gene (At1g67990) which co-regulated with SHT during flower development, was shown to be involved in the O-methylation of spermidine conjugates by analyzing the consequences of its repression in RNAi plants and by characterizing the methylation activity of the recombinant enzyme.


Assuntos
Aciltransferases/metabolismo , Proteínas de Arabidopsis/metabolismo , Arabidopsis/enzimologia , Flores/enzimologia , Espermidina/biossíntese , Aciltransferases/genética , Arabidopsis/genética , Proteínas de Arabidopsis/genética , Flores/genética , Regulação da Expressão Gênica de Plantas , Técnicas de Inativação de Genes , Metaboloma , Plantas Geneticamente Modificadas/enzimologia , Plantas Geneticamente Modificadas/genética , Pólen/metabolismo , Interferência de RNA , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA