Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Neuroscience ; 231: 13-27, 2013 Feb 12.
Artigo em Inglês | MEDLINE | ID: mdl-23206874

RESUMO

Ideomotor theory holds that the perception or anticipatory imagination of action effects activates motor tendencies toward the action that is known to produce these effects, herein referred to as ideomotor response activation (IRA). IRA presupposes that the agent has previously learned which action produces which effects, and that this learning process has created bidirectional associations between the sensory effect codes and the motor codes producing the sensory effects. Here, we refer to this process as ideomotor learning. In the presented fMRI study, we adopted a standard two-phase ideomotor learning paradigm; a mixed between/within-subjects design allowed us to assess the neural substrate of both, IRA and ideomotor learning. We replicated earlier findings of a hand asymmetry in ideomotor processing with significantly stronger IRA by left-hand than right-hand action effects. Crucially, we traced this effect back to more pronounced associative learning for action-contingent effects of the left hand compared with effects of the right hand. In this context, our findings point to the caudate nucleus and the angular gyrus as central structures of the neural network underlying ideomotor learning.


Assuntos
Aprendizagem por Associação/fisiologia , Núcleo Caudado/fisiologia , Lateralidade Funcional/fisiologia , Imaginação/fisiologia , Lobo Parietal/fisiologia , Desempenho Psicomotor/fisiologia , Estimulação Acústica , Adulto , Atenção/fisiologia , Mapeamento Encefálico , Feminino , Neuroimagem Funcional , Humanos , Imageamento por Ressonância Magnética , Masculino , Estimulação Luminosa , Tempo de Reação/fisiologia
2.
Am J Physiol ; 277(3): R698-704, 1999 09.
Artigo em Inglês | MEDLINE | ID: mdl-10484486

RESUMO

The effect of oral creatine supplementation on brain metabolite concentrations was investigated in gray matter, white matter, cerebellum, and thalamus of healthy young volunteers by means of quantitative localized proton magnetic resonance spectroscopy in vivo (2.0 T, stimulated echo acquisition mode sequence; repetition time = 6,000 ms, echo time = 20 ms, middle interval = 10 ms, automated spectral evaluation). Oral consumption of 4 x 5 g creatine-monohydrate/day for 4 wk yielded a statistically significant increase (8.7% corresponding to 0.6 mM, P < 0.001) of the mean concentration of total creatine (tCr) when averaged across brain regions and subjects (n = 6). The data revealed considerable intersubject variability (3.5-13.3%), with the smallest increases observed for the two male volunteers with the largest body weights. A regional analysis resulted in significant increases of tCr in gray matter (4.7%), white matter (11.5%), and cerebellum (5.4%) and was most pronounced in thalamus (14.6% corresponding to 1.0 mM). Other findings were significant decreases of N-acetyl-containing compounds in cerebellum and thalamus as well as of choline-containing compounds in thalamus. All cerebral metabolic alterations caused by oral Cr were reversible, as evidenced by control measurements at least 3 mo after the diet. This work demonstrates that excess consumption of Cr yields regionally dependent increases of the tCr concentration in human brain over periods of several weeks.


Assuntos
Encéfalo/metabolismo , Creatina/administração & dosagem , Creatina/metabolismo , Administração Oral , Adulto , Dieta , Feminino , Humanos , Imageamento por Ressonância Magnética , Masculino
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA