Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Métodos Terapêuticos e Terapias MTCI
Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Pharmacol Res ; 198: 106999, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37984504

RESUMO

Cell-to-cell communication strategies include extracellular vesicles (EVs) in plants and animals. The bioactive molecules in a diet rich in vegetables and fruits are associated with disease-preventive effects. Plant-derived EVs (PDEVs) are biogenetically and morphologically comparable to mammalian EVs and transport bioactive molecules, including miRNAs. However, the biological functions of PDEVs are not fully understood, and standard isolation protocols are lacking. Here, PDEVs were isolated from four foods with a combination of ultracentrifugation and size exclusion chromatography, and evaluated as vehicles for enhanced transport of synthetic miRNAs. In addition, the role of food-derived EVs as carriers of dietary (poly)phenols and other secondary metabolites was investigated. EVs from broccoli, pomegranate, apple, and orange were efficiently isolated and characterized. In all four sources, 4 miRNA families were present in tissues and EVs. miRNAs present in broccoli and fruit-derived EVs showed a reduced RNase degradation and were ferried inside exposed cells. EVs transfected with a combination of ath-miR159a, ath-miR162a-3p, ath-miR166b-3p, and ath-miR396b-5p showed toxic effects on human cells, as did natural broccoli EVs alone. PDEVs transport trace amounts of phytochemicals, including flavonoids, anthocyanidins, phenolic acids, or glucosinolates. Thus, PDEVs can act as nanocarriers for functional miRNAs that could be used in RNA-based therapy.


Assuntos
Vesículas Extracelulares , MicroRNAs , Animais , Humanos , MicroRNAs/genética , MicroRNAs/metabolismo , Vesículas Extracelulares/metabolismo , Células Cultivadas , Frutas , Mamíferos/genética , Mamíferos/metabolismo
2.
Eur J Nutr ; 60(4): 1999-2011, 2021 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-32979076

RESUMO

PURPOSE: Epidemiological studies and clinical trials support the association of nut consumption with a lower risk of prevalent non-communicable diseases, particularly cardiovascular disease. However, the molecular mechanisms underlying nut benefits remain to be fully described. MicroRNAs (miRNAs) are post-transcriptional regulators of gene expression and play a pivotal role in health and disease. Exosomes are extracellular vesicles released from cells and mediate intercellular communication. Whether nut consumption modulates circulating miRNAs (c-miRNAs) transported in exosomes is poorly described. METHODS: Cognitively healthy elderly subjects were randomized to either control (n = 110, abstaining from walnuts) or daily supplementation with walnuts (15% of their total energy, ≈30-60 g/day, n = 101) for 1-year. C-miRNAs were screened in exosomes isolated from 10 samples, before and after supplementation, and identified c-miRNA candidates were validated in the whole cohort. In addition, nanoparticle tracking analysis and lipidomics were assessed in pooled exosomes from the whole cohort. RESULTS: Exosomal hsa-miR-32-5p and hsa-miR-29b-3p were consistently induced by walnut consumption. No major changes in exosomal lipids, nanoparticle concentration or size were found. CONCLUSION: Our results provide novel evidence that certain c-miRNAs transported in exosomes are modulated by walnut consumption. The extent to which this finding contributes to the benefits of walnuts deserves further research.


Assuntos
Exossomos , Juglans , MicroRNAs , Suplementos Nutricionais , Nozes
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA