Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Nutrition ; 25(2): 209-15, 2009 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-18849148

RESUMO

OBJECTIVE: We examined the effect of different amounts of dietary corn oil rich in linoleic acid (LA) on the endogenous synthesis of arachidonic acid (AA), uptake of its precursor LA, and fatty acid composition of tissues involved in the supply of long-chain polyunsaturated fatty acids for milk synthesis. METHODS: Female Sprague Dawley rats received one of the following diets during pregnancy and lactation: a low-lipid diet (LLD; 2%), an adequate-lipid diet (ALD; 5%), or a high-lipid diet (HLD; 10%). Lipids were provided by corn oil. On day 12 of lactation we measured the endogenous synthesis of AA and quantified the conversion of (13)C-LA to (13)C-AA and the metabolic fate of (13)C-LA from all dietary groups. RESULTS: The LLD rats demonstrated larger amounts of endogenous synthesis of (13)C-AA and more dietary (13)C-LA transferred to the mammary gland (MG) than HLD rats during lactation. The proportion of medium-chain fatty acids was higher in the MG, milk clot, and liver of LLD than of HLD rats. Daily volume and 24-h yield of lipids and energy were lower in LLD rats than in HLD rats. Measurements of milk composition demonstrated that fat concentration significantly increased as lipid concentration increased in the diet. CONCLUSION: These results suggest that maternal adaptations used to compensate for diets deficient in long-chain polyunsaturated fatty acids include increased endogenous synthesis of AA and elevated uptake of LA in the MG and increased synthesis of medium-chain polyunsaturated fatty acids. It appears that the MG and liver participate together for AA synthesis for milk when this fatty acid is not provided in the diet.


Assuntos
Ácido Araquidônico/biossíntese , Óleo de Milho/farmacologia , Ácidos Graxos/análise , Lactação/efeitos dos fármacos , Lactação/metabolismo , Leite/química , Adaptação Fisiológica , Animais , Ácido Araquidônico/administração & dosagem , Isótopos de Carbono , Dieta com Restrição de Gorduras , Relação Dose-Resposta a Droga , Feminino , Ácido Linoleico/administração & dosagem , Ácido Linoleico/metabolismo , Gravidez , Distribuição Aleatória , Ratos , Ratos Sprague-Dawley
2.
J Lipid Res ; 47(3): 553-60, 2006 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-16333142

RESUMO

The purpose of this work was to study whether rat lactating mammary gland can synthesize PUFAs through the expression of Delta5 and Delta6 desaturases (Delta5D and Delta6D), whether these enzymes are regulated by the transcription factors sterol-regulatory element binding protein 1 (SREBP-1) and peroxisome proliferator-activated receptor alpha (PPARalpha) and the coactivator peroxisome proliferator-activated receptor gamma coactivator 1beta (PGC-1beta), and whether these desaturases are regulated by the lipid concentration in the diet. The results showed that on day 12 of lactation, approximately 35% of the linoleic acid in the diet, which is the precursor of PUFAs, is transferred to the mammary gland. There was expression of Delta5D and Delta6D in mammary gland, and it was regulated by the corn oil content in the diet. The higher the corn oil content in the diet, the lower the expression of both desaturases. Induction of Delta5D and Delta6D was associated positively with similar changes in SREBP-1 and PGC-1beta. Expression of PPARalpha was barely detected and was not affected by the corn oil content in the diet, whereas PGC-1beta expression increased as the corn oil in the diet increased. These results indicate that the lactating mammary gland has the capacity to synthesize PUFAs and can be regulated by the lipid content in the diet.


Assuntos
Ácidos Graxos Dessaturases/metabolismo , Ácidos Graxos Insaturados/biossíntese , Lactação , Linoleoil-CoA Desaturase/metabolismo , PPAR alfa/metabolismo , Proteína de Ligação a Elemento Regulador de Esterol 1/metabolismo , Fatores de Transcrição/metabolismo , Tecido Adiposo/metabolismo , Animais , Ácido Araquidônico/metabolismo , Óleo de Milho/metabolismo , Dessaturase de Ácido Graxo Delta-5 , Gorduras Insaturadas na Dieta , Ácidos Graxos Insaturados/metabolismo , Feminino , Fígado/metabolismo , Masculino , Gravidez , RNA Mensageiro/metabolismo , Ratos , Ratos Sprague-Dawley , Especificidade da Espécie , Aumento de Peso , Ácido alfa-Linolênico/metabolismo , Ácido alfa-Linolênico/farmacologia
3.
Rev Invest Clin ; 57(3): 457-72, 2005.
Artigo em Espanhol | MEDLINE | ID: mdl-16187707

RESUMO

Essential polyunsaturated fatty acids (PUFAs), linoleic acid n6 (LA) and linolenic acid (ALA) n3 obtained from the diet are precursors of the long-chain polyunsaturated fatty acids (Lc-PUFAs) arachidonic acid (AA) and docosahexaenoic acid (DHA) respectively. Consumption of PUFAs is related with a better neurological and cognitive development in newborns. It has been demonstrated that consumption of n-6 and n-3 PUFAs decreases blood triglycerides by increasing fatty acid oxidation through activation of PPARalpha or by reducing the activation of SREBP-1 inhibiting lipogenesis. Dietary PUFAs activate PPARalpha and PPARgamma increasing lipid oxidation, and decreasing insulin resistance leading in a reduction of hepatic steatosis. Beneficial effects of PUFAs have been observed in humans and in animals models of diabetes, obesity, cancer, and cardiovascular diseases. It is important to promote the consumption of PUFAs. Main food sources of PUFAs n-6 are corn, soy and safflower oil, and for PUFAs n-3 are fish, soy, canola oil and, flaxseed. Finally FAO/WHO recommends an optimal daily intake of n6/n3 of 5-10:1.


Assuntos
Ácidos Graxos Insaturados/fisiologia , Adulto , Idoso , Idoso de 80 Anos ou mais , Animais , Ácidos Araquidônicos/metabolismo , Proteínas Estimuladoras de Ligação a CCAAT/fisiologia , Doenças Cardiovasculares/tratamento farmacológico , Doenças Cardiovasculares/prevenção & controle , Proteínas de Ligação a DNA/fisiologia , Dermatite Atópica/tratamento farmacológico , Diabetes Mellitus/diagnóstico , Diabetes Mellitus/prevenção & controle , Gorduras na Dieta/farmacologia , Gorduras na Dieta/uso terapêutico , Desenvolvimento Embrionário/efeitos dos fármacos , Desenvolvimento Embrionário/fisiologia , Ácidos Graxos/metabolismo , Ácidos Graxos Ômega-3/farmacologia , Ácidos Graxos Ômega-3/fisiologia , Ácidos Graxos Ômega-3/uso terapêutico , Ácidos Graxos Ômega-6/farmacologia , Ácidos Graxos Ômega-6/fisiologia , Ácidos Graxos Ômega-6/uso terapêutico , Ácidos Graxos Insaturados/farmacocinética , Ácidos Graxos Insaturados/farmacologia , Ácidos Graxos Insaturados/uso terapêutico , Fígado Gorduroso/tratamento farmacológico , Feminino , Crescimento/efeitos dos fármacos , Crescimento/fisiologia , Humanos , Hipertrigliceridemia/tratamento farmacológico , Recém-Nascido , Resistência à Insulina , Peroxidação de Lipídeos/efeitos dos fármacos , Masculino , Camundongos , Pessoa de Meia-Idade , Neoplasias/tratamento farmacológico , Neoplasias/prevenção & controle , Neoplasias Experimentais/tratamento farmacológico , Neoplasias Experimentais/prevenção & controle , Obesidade/tratamento farmacológico , Obesidade/prevenção & controle , PPAR alfa/agonistas , PPAR gama/agonistas , Óleos de Plantas/farmacologia , Óleos de Plantas/uso terapêutico , Gravidez , Ratos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA