Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Sensors (Basel) ; 23(23)2023 Nov 21.
Artigo em Inglês | MEDLINE | ID: mdl-38067674

RESUMO

Stroke is a debilitating clinical condition resulting from a brain infarction or hemorrhage that poses significant challenges for motor function restoration. Previous studies have shown the potential of applying transcranial direct current stimulation (tDCS) to improve neuroplasticity in patients with neurological diseases or disorders. By modulating the cortical excitability, tDCS can enhance the effects of conventional therapies. While upper-limb recovery has been extensively studied, research on lower limbs is still limited, despite their important role in locomotion, independence, and good quality of life. As the life and social costs due to neuromuscular disability are significant, the relatively low cost, safety, and portability of tDCS devices, combined with low-cost robotic systems, can optimize therapy and reduce rehabilitation costs, increasing access to cutting-edge technologies for neuromuscular rehabilitation. This study explores a novel approach by utilizing the following processes in sequence: tDCS, a motor imagery (MI)-based brain-computer interface (BCI) with virtual reality (VR), and a motorized pedal end-effector. These are applied to enhance the brain plasticity and accelerate the motor recovery of post-stroke patients. The results are particularly relevant for post-stroke patients with severe lower-limb impairments, as the system proposed here provides motor training in a real-time closed-loop design, promoting cortical excitability around the foot area (Cz) while the patient directly commands with his/her brain signals the motorized pedal. This strategy has the potential to significantly improve rehabilitation outcomes. The study design follows an alternating treatment design (ATD), which involves a double-blind approach to measure improvements in both physical function and brain activity in post-stroke patients. The results indicate positive trends in the motor function, coordination, and speed of the affected limb, as well as sensory improvements. The analysis of event-related desynchronization (ERD) from EEG signals reveals significant modulations in Mu, low beta, and high beta rhythms. Although this study does not provide conclusive evidence for the superiority of adjuvant mental practice training over conventional therapy alone, it highlights the need for larger-scale investigations.


Assuntos
Interfaces Cérebro-Computador , Reabilitação do Acidente Vascular Cerebral , Acidente Vascular Cerebral , Estimulação Transcraniana por Corrente Contínua , Feminino , Humanos , Masculino , Qualidade de Vida , Recuperação de Função Fisiológica/fisiologia , Reabilitação do Acidente Vascular Cerebral/métodos , Estimulação Transcraniana por Corrente Contínua/métodos , Extremidade Superior , Método Duplo-Cego
2.
Sensors (Basel) ; 23(2)2023 Jan 08.
Artigo em Inglês | MEDLINE | ID: mdl-36679501

RESUMO

The development of Brain-Computer Interfaces based on Motor Imagery (MI) tasks is a relevant research topic worldwide. The design of accurate and reliable BCI systems remains a challenge, mainly in terms of increasing performance and usability. Classifiers based on Bayesian Neural Networks are proposed in this work by using the variational inference, aiming to analyze the uncertainty during the MI prediction. An adaptive threshold scheme is proposed here for MI classification with a reject option, and its performance on both datasets 2a and 2b from BCI Competition IV is compared with other approaches based on thresholds. The results using subject-specific and non-subject-specific training strategies are encouraging. From the uncertainty analysis, considerations for reducing computational cost are proposed for future work.


Assuntos
Interfaces Cérebro-Computador , Eletroencefalografia , Eletroencefalografia/métodos , Teorema de Bayes , Imaginação , Redes Neurais de Computação , Imagens, Psicoterapia , Algoritmos
3.
J Neural Eng ; 20(1)2023 02 15.
Artigo em Inglês | MEDLINE | ID: mdl-36716494

RESUMO

Objective.This work proposes a method for two calibration schemes based on sensory feedback to extract reliable motor imagery (MI) features, and provide classification outputs more correlated to the user's intention.Method.After filtering the raw electroencephalogram (EEG), a two-step method for spatial feature extraction by using the Riemannian covariance matrices (RCM) method and common spatial patterns is proposed here. It uses EEG data from trials providing feedback, in an intermediate step composed of bothkth nearest neighbors and probability analyses, to find periods of time in which the user probably performed well the MI task without feedback. These periods are then used to extract features with better separability, and train a classifier for MI recognition. For evaluation, an in-house dataset with eight healthy volunteers and two post-stroke patients that performed lower-limb MI, and consequently received passive movements as feedback was used. Other popular public EEG datasets (such as BCI Competition IV dataset IIb, among others) from healthy subjects that executed upper-and lower-limbs MI tasks under continuous visual sensory feedback were further used.Results.The proposed system based on the Riemannian geometry method in two-steps (RCM-RCM) outperformed significantly baseline methods, reaching average accuracy up to 82.29%. These findings show that EEG data on periods providing passive movement can be used to contribute greatly during MI feature extraction.Significance.Unconscious brain responses elicited over the sensorimotor areas may be avoided or greatly reduced by applying our approach in MI-based brain-computer interfaces (BCIs). Therefore, BCI's outputs more correlated to the user's intention can be obtained.


Assuntos
Interfaces Cérebro-Computador , Humanos , Calibragem , Retroalimentação Sensorial , Imagens, Psicoterapia , Eletroencefalografia/métodos , Imaginação/fisiologia , Algoritmos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA