Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Molecules ; 28(11)2023 May 25.
Artigo em Inglês | MEDLINE | ID: mdl-37298809

RESUMO

The quality of Panax Linn products available in the market is threatened by adulteration with different Panax species, such as Panax quinquefolium (PQ), Panax ginseng (PG), and Panax notoginseng (PN). In this paper, we established a 2D band-selective heteronuclear single quantum coherence (bs-HSQC) NMR method to discriminate species and detect adulteration of Panax Linn. The method involves selective excitation of the anomeric carbon resonance region of saponins and non-uniform sampling (NUS) to obtain high-resolution spectra in less than 10 min. The combined strategy overcomes the signal overlap limitation in 1H NMR and the long acquisition time in traditional HSQC. The present results showed that twelve well-separated resonance peaks can be assigned in the bs-HSQC spectra, which are of high resolution, good repeatability, and precision. Notably, the identification accuracy of species was found to be 100% for all tests conducted in the present study. Furthermore, in combination with multivariate statistical methods, the proposed method can effectively determine the composition proportion of adulterants (from 10% to 90%). Based on the PLS-DA models, the identification accuracy was greater than 80% when composition proportion of adulterants was 10%. Thus, the proposed method may provide a fast, practical, and effective analysis technique for food quality control or authenticity identification.


Assuntos
Panax notoginseng , Panax , Saponinas , Panax/química , Panax notoginseng/química , Espectroscopia de Ressonância Magnética , Imageamento por Ressonância Magnética
2.
Anal Chem ; 95(15): 6203-6211, 2023 04 18.
Artigo em Inglês | MEDLINE | ID: mdl-37023366

RESUMO

Drug combinations are commonly used to treat various diseases to achieve synergistic therapeutic effects or to alleviate drug resistance. Nevertheless, some drug combinations might lead to adverse effects, and thus, it is crucial to explore the mechanisms of drug interactions before clinical treatment. Generally, drug interactions have been studied using nonclinical pharmacokinetics, toxicology, and pharmacology. Here, we propose a complementary strategy based on metabolomics, which we call interaction metabolite set enrichment analysis, or iMSEA, to decipher drug interactions. First, a digraph-based heterogeneous network model was constructed to model the biological metabolic network based on the Kyoto Encyclopedia of Genes and Genomes (KEGG) database. Second, treatment-specific influences on all detected metabolites were calculated and propagated across the whole network model. Third, pathway activity was defined and enriched to quantify the influence of each treatment on the predefined functional metabolite sets, i.e., metabolic pathways. Finally, drug interactions were identified by comparing the pathway activity enriched by the drug combination treatments and the single drug treatments. A data set consisting of hepatocellular carcinoma (HCC) cells that were treated with oxaliplatin (OXA) and/or vitamin C (VC) was used to illustrate the effectiveness of the iMSEA strategy for evaluation of drug interactions. Performance evaluation using synthetic noise data was also performed to evaluate sensitivities and parameter settings for the iMSEA strategy. The iMSEA strategy highlighted synergistic effects of combined OXA and VC treatments including the alterations in the glycerophospholipid metabolism pathway and glycine, serine, and threonine metabolism pathway. This work provides an alternative method to reveal the mechanisms of drug combinations from the viewpoint of metabolomics.


Assuntos
Carcinoma Hepatocelular , Neoplasias Hepáticas , Humanos , Carcinoma Hepatocelular/metabolismo , Neoplasias Hepáticas/metabolismo , Metabolômica/métodos , Redes e Vias Metabólicas , Interações Medicamentosas
3.
J Zhejiang Univ Sci B ; 20(11): 877-890, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31595724

RESUMO

Glycerol monolaurate (GML) has been widely used as an effective antibacterial emulsifier in the food industry. A total of 360 44-week-old Hy-Line brown laying hens were randomly distributed into four groups each with six replicates of 15 birds, and fed with corn-soybean-meal-based diets supplemented with 0, 0.15, 0.30, and 0.45 g/kg GML, respectively. Our results showed that 0.15, 0.30, and 0.45 g/kg GML treatments significantly decreased feed conversion ratios (FCRs) by 2.65%, 7.08%, and 3.54%, respectively, and significantly increased the laying rates and average egg weights. For egg quality, GML drastically increased albumen height and Haugh units, and enhanced yolk color. Notably, GML increased the concentrations of polyunsaturated and monounsaturated fatty acids and reduced the concentration of total saturated fatty acids in the yolk. The albumen composition was also significantly modified, with an increase of 1.02% in total protein content, and increased contents of His (4.55%) and Glu (2.02%) under the 0.30 g/kg GML treatment. Additionally, GML treatments had positive effects on the lipid metabolism of laying hens, including lowering the serum triglyceride and total cholesterol levels and reducing fat deposition in abdominal adipose tissue. Intestinal morphology was also improved by GML treatment, with increased villus length and villus height to crypt depth ratio. Our data demonstrated that GML supplementation of laying hens could have beneficial effects on both their productivity and physiological properties, which indicates the potential application of GML as a functional feed additive and gives us a new insight into this traditional food additive.


Assuntos
Intestinos/citologia , Lauratos/administração & dosagem , Monoglicerídeos/administração & dosagem , Oviposição/efeitos dos fármacos , Óvulo , Albuminas/análise , Animais , Galinhas , Dieta , Suplementos Nutricionais , Gema de Ovo/química , Feminino , Hormônios Esteroides Gonadais/sangue , Metabolismo dos Lipídeos , Estresse Oxidativo
4.
J Sci Food Agric ; 99(8): 3852-3859, 2019 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-30680726

RESUMO

BACKGROUND: Understanding the interactions between feed additives and the functional properties of egg white protein (EWP) may offer novel insights into the effects of feed additives on laying hens and may provide an alternative for modification of the functional properties of EWP by using laying hens as bioreactors. Glycerol monolaurate (GML) is widely used in the food industry as an effective antibacterial emulsifier. In this work, the effects of three doses of dietary GML supplementation (150, 300, and 450 mg kg-1 hen) on the functional properties of EWP were investigated. RESULTS: The hardness of EWP gels was significantly improved by 300 and 450 mg kg-1 GML supplementation. Foaming capacity (FC) and foaming stability (FS) were increased after GML treatment; 450 mg kg-1 GML supplementation showed the most significant improvements, with 44.82% in FC and 23.39% in FS. Stabilization of EWP-oil emulsions was also improved, supported by a slowed creaming process and the formation of smaller oil droplets. The heat denaturation temperature and rheological properties were also modified by dietary GML supplementation, implying improved thermal stability. CONCLUSION: Our study demonstrated that GML supplementation has the potential to modify the functional properties of EWP, broadening the application of GML and providing a new perspective for evaluation of the efficacy of feed additives. © 2019 Society of Chemical Industry.


Assuntos
Ração Animal/análise , Galinhas/metabolismo , Suplementos Nutricionais/análise , Proteínas do Ovo/química , Clara de Ovo/química , Lauratos/metabolismo , Monoglicerídeos/metabolismo , Animais , Proteínas do Ovo/metabolismo , Óvulo/química , Óvulo/metabolismo , Reologia , Solubilidade , Temperatura
5.
PLoS One ; 10(5): e0127291, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-25996147

RESUMO

Food-grade microemulsions containing oleic acid, ethanol, Tween 20, and water were formulated as a carrier system for tea seed oil (Camellia oleifera Abel.). The effect of ethanol on the phase behavior of the microemulsion system was clearly reflected in pseudo-ternary diagrams. The solubilization capacity and solubilization efficiency of tea seed oil dispersions were measured along the dilution line at a 70/30 surfactant/oil mass ratio with Tween 20 as the surfactant and oleic acid and ethanol (1:3, w/w) as the oil phase. The dispersed phase of the microemulsion (1.5% weight ratio of tea seed oil to the total amount of oil, surfactant, and tea seed oil) could be fully diluted with water without phase separation. Differential scanning calorimetry and viscosity measurements indicated that both the carrier and solubilized systems underwent a similar microstructure transition upon dilution. The dispersion phases gradually inverted from the water-in-oil phase (< 35% water) to the bicontinuous phase (40-45% water) and finally to the oil-in-water phase (> 45% water) along the dilution line.


Assuntos
Camellia sinensis/química , Óleos de Plantas/química , Sementes/química , Varredura Diferencial de Calorimetria , Emulsões/química , Solubilidade , Viscosidade
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA