Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
1.
Int Wound J ; 21(4): e14527, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38095110

RESUMO

Thrombophlebitis is the inflammatory condition characterized by obstruction of one or more vessels, commonly in the legs, due to the formation of blood clots. It has been reported that traditional Chinese medicine, including Mailuoning injection, is advantageous for treating inflammatory and blood disorders. This research assessed the therapeutic efficacy of Mailuoning injection in the treatment of thrombophlebitis in rodents, as well as investigated its impact on fibrinolysis, inflammation, and coagulation. An experimental setup for thrombophlebitis was established in rodents via modified ligation technique. Five groups comprised the animals: sham operation group, model group, and three Mailuoning treatment groups (low, medium, and high dosages). The pain response, edema, coagulation parameters (PT, APTT, TT, FIB), serum inflammatory markers (IL-6, TNF-α, CRP), and expression levels of endothelial markers (ICAM-1, VCAM-1, NF-κB) were evaluated. Blood flow and vascular function were further assessed by measuring hemorheological parameters and the concentrations of TXB2, ET, and 6-k-PGF1α. In contrast to the sham group, model group demonstrated statistically significant increases in endothelial expression levels, coagulation latencies, and inflammatory markers (p < 0.05). The administration of mailing, specifically at high and medium dosages, resulted in a substantial reduction in inflammatory markers, enhancement of coagulation parameters, suppression of ICAM-1 and VCAM-1 expression, and restoration of hemorheological measurements to baseline (p < 0.05). Significantly higher concentrations of 6-k-PGF1α and lower levels of TXB2 and ET were observed in high-dose group, suggesting that pro- and anti-thrombotic factors were restored to equilibrium. Utilization of Mailuoning injection in rat model of thrombophlebitis exhibited significant therapeutic impact. This effect was manifested through pain alleviation, diminished inflammation, enhanced blood viscosity and facilitation of fibrinolysis. The study indicated that Mailuoning injection may serve as a viable therapeutic option for thrombophlebitis, potentially aiding in the improvement of wound healing by virtue of its anti-inflammatory and blood flow-enhancing characteristics.


Assuntos
Medicamentos de Ervas Chinesas , Molécula 1 de Adesão Intercelular , Tromboflebite , Ratos , Animais , Molécula 1 de Adesão Intercelular/metabolismo , Molécula 1 de Adesão de Célula Vascular/metabolismo , Cicatrização , Inflamação/tratamento farmacológico , Tromboflebite/tratamento farmacológico , Dor
2.
Front Pharmacol ; 14: 1074506, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36755942

RESUMO

Cancer is a disease with a high fatality rate representing a serious threat to human health. Researchers have tried to identify effective anticancer drugs. Licorice is a widely used traditional Chinese medicine with various pharmacological properties, and licorice-derived flavonoids include licochalcones like licochalcone A, licochalcone B, licochalcone C, licochalcone D, licochalcone E, and licochalcone H. By regulating the expression in multiple signaling pathways such as the EGFR/ERK, PI3K/Akt/mTOR, p38/JNK, JAK2/STAT3, MEK/ERK, Wnt/ß-catenin, and MKK4/JNK pathways, and their downstream proteins, licochalcones can activate the mitochondrial apoptosis pathway and death receptor pathway, promote autophagy-related protein expression, inhibit the expression of cell cycle proteins and angiogenesis factors, regulate autophagy and apoptosis, and inhibit the proliferation, migration, and invasion of cancer cells. Among the licochalcones, the largest number of studies examined licochalcone A, far more than other licochalcones. Licochalcone A not only has prominent anticancer effects but also can be used to inhibit the efflux of antineoplastic drugs from cancer cells. Moreover, derivatives of licochalcone A exhibit strong antitumor effects. Currently, most results of the anticancer effects of licochalcones are derived from cell experiments. Thus, more clinical studies are needed to confirm the antineoplastic effects of licochalcones.

3.
Sci Rep ; 11(1): 10516, 2021 05 18.
Artigo em Inglês | MEDLINE | ID: mdl-34006996

RESUMO

Gnetum is a pantropical distributed gymnosperm genus. As being dioecious, Gnetum species apply female and male strobili to attract and provide nutrition to insect pollinators. Due to its unique gross morphology, a Gnetum male strobilus receives much attention in previous taxonomic and evolutionary studies. However, underlying molecular mechanisms that control male strobilus development and pollination adaptation have not been well studied. In the present study, nine full-length transcriptomes were sequenced from three developmental stages of the G. luofuense male strobili using Oxford Nanopore Technologies. In addition, weighted gene co-expression network analysis (WGCNA), and RT-qPCR analysis were performed. Our results show that a total of 3138 transcription factors and 466 long non-coding RNAs (lncRNAs) were identified, and differentially expressed lncRNAs and TFs reveal a dynamic pattern during the male strobilus development. Our results show that MADS-box and Aux/IAA TFs were differentially expressed at the three developmental stages, suggesting their important roles in the regulation of male strobilus development of G. luofuense. Results of WGCNA analysis and annotation of differentially expressed transcripts corroborate that the male strobilus development of G. luofuense is closely linked to plant hormone changes, photosynthesis, pollination drop secretion and reproductive organ defense. Our results provide a valuable resource for understanding the molecular mechanisms that drive organ evolution and pollination biology in Gnetum.


Assuntos
Gnetum/crescimento & desenvolvimento , Sequenciamento por Nanoporos/métodos , Pólen , Transcriptoma , Regulação da Expressão Gênica no Desenvolvimento , Regulação da Expressão Gênica de Plantas , Gnetum/genética , RNA Longo não Codificante/genética , Reação em Cadeia da Polimerase em Tempo Real , Fatores de Transcrição/genética
5.
Artigo em Inglês | MEDLINE | ID: mdl-30647760

RESUMO

Ischemic stroke is accompanied by high mortality and morbidity rates. At present, there is no effective clinical treatment. Alternatively, traditional Chinese medicine has been widely used in China and Japan for the treatment of ischemic stroke. Baicalin is a flavonoid extracted from Scutellaria baicalensis that has been shown to be effective against ischemic stroke; however, its mechanism has not been fully elucidated. Based on network pharmacology, we explored the potential mechanism of baicalin on a system level. After obtaining baicalin structural information from the PubChem database, an approach combined with literature mining and PharmMapper prediction was used to uncover baicalin targets. Ischemic stroke-related targets were gathered with the help of DrugBank, Online Mendelian Inheritance in Man (OMIM), Genetic Association Database (GAD), and Therapeutic Target Database (TTD). Protein-protein interaction (PPI) networks were constructed through the Cytoscape plugin BisoGenet and analyzed by topological methods. Gene ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment were carried out via the Database for Annotation, Visualization, and Integrated Discovery (DAVID) server. We obtained a total of 386 potential targets and 5 signaling pathways, including mitogen-activated protein kinase (MAPK), phosphoinositide 3-kinase (PI3K)/protein kinase B (AKT), hypoxia-inducible factor-1 (HIF-1), nuclear factor kappa B (NF-κB), and forkhead box (FOXO) signaling pathways. GO analysis showed that these targets were associated with antiapoptosis, antioxidative stress, anti-inflammation, and other physiopathological processes that are involved in anti-ischemic stroke effects. In summary, the mechanism of baicalin against ischemic stroke involved multiple targets and signaling pathways. Our study provides a network pharmacology framework for future research on traditional Chinese medicine.


Assuntos
Isquemia Encefálica/metabolismo , Medicamentos de Ervas Chinesas/farmacologia , Flavonoides/farmacologia , Scutellaria baicalensis/química , Acidente Vascular Cerebral/metabolismo , Anti-Inflamatórios/química , Anti-Inflamatórios/farmacologia , Anti-Inflamatórios/uso terapêutico , Antioxidantes/química , Antioxidantes/farmacologia , Antioxidantes/uso terapêutico , Apoptose/efeitos dos fármacos , Isquemia Encefálica/tratamento farmacológico , Bases de Dados Genéticas , Medicamentos de Ervas Chinesas/química , Medicamentos de Ervas Chinesas/uso terapêutico , Flavonoides/química , Flavonoides/uso terapêutico , Fatores de Transcrição Forkhead/metabolismo , Humanos , Fator 1 Induzível por Hipóxia/metabolismo , Proteínas Quinases Ativadas por Mitógeno/metabolismo , Simulação de Acoplamento Molecular , Estrutura Molecular , NF-kappa B/metabolismo , Fosfatidilinositol 3-Quinases/metabolismo , Fitoterapia , Mapas de Interação de Proteínas , Transdução de Sinais , Acidente Vascular Cerebral/tratamento farmacológico
6.
Front Plant Sci ; 7: 174, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-26973657

RESUMO

Gnetum is a small, unique group of Gnetophyta with a controversial phylogenetic position. Gnetum parvifolium is an important Chinese traditional medicinal plant, which is rich in bioactive compounds such as flavonoids and stilbenoids. These compounds provide significant medicinal effects, mostly as antioxidant, anticancer, and antibacterial agents. However, the mechanisms involved in the biosynthesis and regulation of these compounds in G. parvifolium are still unknown. In this study, we found that flavonoids and stilbene compounds accumulated at different levels in various tissues of G. parvifolium. We further obtained and analyzed massive sequence information from pooled samples of G. parvifolium by transcriptome sequencing, which generated 94,816 unigenes with an average length of 724 bp. Functional annotation of all these unigenes revealed that many of them were associated with several important secondary metabolism pathways including flavonoids and stilbenoids. In particular, several candidate unigenes (PAL-, C4H-, 4CL-, and STS-like genes) involved in stilbenoids biosynthesis were highly expressed in leaves and mature fruits. Furthermore, high temperature and UV-C strongly induced the expression of these genes and enhanced stilbene production (i.e., resveratrol and piceatannol) in leaves of young seedlings. Our present transcriptomic and biochemical data on secondary metabolites in G. parvifolium should encourage further investigation on evolution, ecology, functional genomics, and breeding of this plant with strong pharmaceutical potential.

7.
ACS Appl Mater Interfaces ; 5(15): 7219-26, 2013 Aug 14.
Artigo em Inglês | MEDLINE | ID: mdl-23865475

RESUMO

Hydrogel-based microactuators that enable remote-controlled locomotion and fast Pb(2+)-response for micromanipulation in Pb(2+)-polluted microenvironment have been fabricated from quadruple-component double emulsions. The microactuators are Pb(2+)-responsive poly(N-isopropylacrylamide-co-benzo-18-crown-6-acrylamide) microgels, each with an eccentric magnetic core for magnetic manipulation and a hollow cavity for fast Pb(2+)-response. Micromanipulation of the microactuators is demonstrated by using them for preventing Pb(2+)-leakage from microchannel. The microactuators can be remotely and precisely transported to the Pb(2+)-leaking site under magnetic guide, and then clog the microchannel with Pb(2+)-responsive volume swelling to prevent flowing out of Pb(2+)-contaminated solution. The proposed microactuator structure provides a potential and novel model for developing multifunctional actuators and sensors, biomimetic soft microrobots, microelectro-mechanical systems and drug delivery systems.


Assuntos
Biomimética , Hidrogéis/química , Chumbo/química , Micromanipulação/instrumentação , Micromanipulação/métodos , Acrilamidas/química , Éteres de Coroa , Emulsões , Géis , Magnetismo , Microfluídica , Movimento , Óleos de Plantas , Polímeros/química , Glycine max , Temperatura , Fatores de Tempo , Raios Ultravioleta
8.
Huan Jing Ke Xue ; 26(4): 45-50, 2005 Jul.
Artigo em Chinês | MEDLINE | ID: mdl-16212166

RESUMO

Seven marine phytoplankton, including five green algae (Tetraselmis levis, Chlorella autotrophica, Dunaliella salina, Nannochloropsis sp. and Tetraselmis subcordiformis), one diatom (Phaeodactylum tricornutum), one red alga (Porphyridium purpureum), and three usual transitional metals (Fe(III), Cu(II), Mn(II)) were used to make up marine phytoplankton-light or transitional metals-light or marine phytoplankton-transitional metals-light system. In such system, Se(VI) could be transformed into Se(IV) by photoreduction. The species transformation of selenium could be photo-induced by redox reaction of transitional metals. The photochemical activity of marine phytoplankton was confirmed for the first time, because marine phytoplankton could adsorb and concentrated of selenium, transitional metals and organic substances (including the exudation of algae, as reducing agent) which redox potentials were changed. The ratios of Se(VI) to Se(IV) were dominated by the species, the concentration of marine phytoplankton and transitional metals, and it could be enhanced through increasing the concentration of marine algae or the combined effect from marine algae and transitional metals. After photoreduction by ternary system, the ratio of Se(VI) to Se(IV) ranges from 1.17 to 2.85, which is close to the actual value in euphotic layer of seawater. The photochemical process that is induced by marine algae and transitional metals dominative the leading effects on the distribution of oxidation states of selenium.


Assuntos
Eucariotos/metabolismo , Água do Mar/análise , Selênio/química , Poluentes Químicos da Água/análise , Clorófitas/metabolismo , Diatomáceas/metabolismo , Oxirredução , Fotoquímica , Fitoplâncton/metabolismo , Rodófitas/metabolismo
9.
J Pharm Biomed Anal ; 32(1): 51-7, 2003 Apr 24.
Artigo em Inglês | MEDLINE | ID: mdl-12852448

RESUMO

In view of octanol, a long-chain alkanol, resembled as the configuration of carbohydrate and adipose in human body, the octanol-solubility and water-solubility were used to define the species of iron in medicine, to identify the lipophily and bioavailability of coordinated iron complex, and octanol-water system was adopted to study the distribution of iron in decoction of eight single medicines and compatibility of semen persicae and flos carthami in stomach and intestine. To study the effect of compatibility of medicines, the different acidity of stomach and intestine on the species of iron in phytomedicine decoction, the total concentration, octanol- and water-solubility concentration of iron in medicinal materials or decoctions under gastric and intestinal acidity, were determined, respectively, by flame atomic absorption spectrometry, analyzed and compared. The different acidity of digestive site, the different composition of medicine, and the compatibility of medicines, have greatly affected the species of iron, the pharmacological activity of coordinated iron complex in decoctions. Such factors, especially the concentration of octanol-solubility iron, could be the basis of the dosage to avoid iron overload.


Assuntos
Medicamentos de Ervas Chinesas/análise , Ferro/análise , Ácido Gástrico/química , Concentração de Íons de Hidrogênio , Intestinos/química , Ferro/química , Octanóis , Reprodutibilidade dos Testes , Sensibilidade e Especificidade , Solubilidade , Espectrofotometria Atômica/métodos , Água
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA