Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
1.
J Med Microbiol ; 71(10)2022 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-36288093

RESUMO

Introduction. Staphylococcus aureus is a major cause of chronic diseases and biofilm formation is a contributing factor. 20S-ginsenoside Rg3 (Rg3) is a natural product extracted from the traditional Chinese medicine red ginseng.Gap statement. The effects of Rg3 on biofilm formation and haemolytic activity as well as its antibacterial mechanism against S. aureus have not been reported.Aim. This study aimed to investigate the effects of Rg3 on biofilm formation and haemolytic activity as well as its antibacterial action against clinical S. aureus isolates.Methodology. The effect of Rg3 on biofilm formation of clinical S. aureus isolates was studied by crystal violet staining. Haemolytic activity analysis was carried out. Furthermore, the influence of Rg3 on the proteome profile of S. aureus was studied by quantitative proteomics to clarify the mechanism underlying its antibacterial action and further verified by reverse transcription quantitative real-time polymerase chain reaction (RT-qPCR).Results. Rg3 significantly inhibited biofilm formation and haemolytic activity in clinical S. aureus isolates. A total of 63 with >1.5-fold changes in expression were identified, including 34 upregulated proteins and 29 downregulated proteins. Based on bioinformatics analysis, the expression of several virulence factors and biofilm-related proteins, containing CopZ, CspA, SasG, SaeR/SaeS two-component system and SaeR/SaeS-regulated proteins, including leukocidin-like protein 2, immunoglobulin-binding protein G (Sbi) and fibrinogen-binding protein, in the S. aureus of the Rg3-treated group was downregulated. RT-qPCR confirmed that Rg3 inhibited the regulation of SaeR/SaeS and decreased the transcriptional levels of the biofilm-related genes CopZ, CspA and SasG.Conclusions. Rg3 reduces the formation of biofilm by reducing cell adhesion and aggregation. Further, Rg3 can inhibit the SaeR/SaeS two-component system, which acts as a crucial signal transduction system for the anti-virulence activity of Rg3 against clinical S. aureus isolates.


Assuntos
Produtos Biológicos , Infecções Estafilocócicas , Humanos , Staphylococcus aureus/genética , Leucocidinas , Violeta Genciana/metabolismo , Proteoma/metabolismo , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Fatores de Transcrição/genética , Fatores de Virulência/genética , Fatores de Virulência/metabolismo , Biofilmes , Antibacterianos/farmacologia , Antibacterianos/metabolismo , Fibrinogênio/metabolismo , Imunoglobulinas/metabolismo
2.
Microbiol Spectr ; 10(1): e0099121, 2022 02 23.
Artigo em Inglês | MEDLINE | ID: mdl-35019708

RESUMO

With the increasing reports of community-acquired and nosocomial infection caused by multidrug-resistant Gram-positive pathogens, there is an urgent need to develop new antimicrobial agents with novel antibacterial mechanisms. Here, we investigated the antibacterial activity of the natural product ginkgolic acid (GA) (15:1), derived from Ginkgo biloba, and its potential mode of action against the Gram-positive bacteria Enterococcus faecalis and Staphylococcus aureus. The MIC values of GA (15:1) against clinical E. faecalis and S. aureus isolates from China were ≤4 and ≤8 µg/mL, respectively, from our test results. Moreover, GA (15:1) displayed high efficiency in biofilm formation inhibition and bactericidal activity against E. faecalis and S. aureus. During its inhibition of the planktonic bacteria, the antibacterial activity of GA (15:1) was significantly improved under the condition of abolishing iron homeostasis. When iron homeostasis was abolished, inhibition of planktonic bacteria by GA (15:1) was significantly improved. This phenomenon can be interpreted as showing that iron homeostasis disruption facilitated the disruption of the functions of ribosome and protein synthesis by GA (15:1), resulting in inhibition of bacterial growth and cell death. Genetic mutation of ferric uptake regulator (Fur) led to GA (15:1) tolerance in in vitro-induced resistant derivatives, while overexpression of Fur led to increased GA (15:1) susceptibility. Additionally, GA (15:1) significantly decreased the bacterial loads of S. aureus strain USA300 in the lung tissues of mice in a pneumonic murine model. Conclusively, this study revealed an antimicrobial mechanism of GA (15:1) involving cross talk with iron homeostasis against Gram-positive pathogens. In the future, the natural product GA (15:1) might be applied to combat infections caused by Gram-positive pathogens. IMPORTANCE The increasing emergence of infectious diseases associated with multidrug-resistant Gram-positive pathogens has raised the urgent need to develop novel antibiotics. GA (15:1) is a natural product derived from Ginkgo biloba and possesses a wide range of bioactivities, including antimicrobial activity. However, its antibacterial mechanisms remain unclear. Our current study found that the function of ferric uptake regulator (Fur) was highly correlated with the antimicrobial activity of GA (15:1) against E. faecalis and that the antibacterial activity of GA (15:1) could be strengthened by the disruption of iron homeostasis. This study provided important insight into the mode of action of GA (15:1) against Gram-positive bacteria and suggested that GA (15:1) holds the potential to be an antimicrobial treatment option for infection caused by multidrug-resistant Gram-positive pathogens.


Assuntos
Antibacterianos/administração & dosagem , Enterococcus faecalis/efeitos dos fármacos , Infecções por Bactérias Gram-Positivas/tratamento farmacológico , Ferro/metabolismo , Extratos Vegetais/administração & dosagem , Salicilatos/administração & dosagem , Staphylococcus aureus/efeitos dos fármacos , Animais , Enterococcus faecalis/metabolismo , Feminino , Ginkgo biloba , Infecções por Bactérias Gram-Positivas/microbiologia , Homeostase/efeitos dos fármacos , Humanos , Camundongos , Camundongos Endogâmicos BALB C , Testes de Sensibilidade Microbiana , Staphylococcus aureus/metabolismo
3.
Comput Intell Neurosci ; 2021: 4812979, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34326866

RESUMO

Synthetic aperture radar (SAR) plays an irreplaceable role in the monitoring of marine oil spills. However, due to the limitation of its imaging characteristics, it is difficult to use traditional image processing methods to effectively extract oil spill information from SAR images with coherent speckle noise. In this paper, the convolutional neural network AlexNet model is used to extract the oil spill information from SAR images by taking advantage of its features of local connection, weight sharing, and learning for image representation. The existing remote sensing images of the oil spills in recent years in China are used to build a dataset. These images are enhanced by translation and flip of the dataset, and so on and then sent to the established deep convolutional neural network for training. The prediction model is obtained through optimization methods such as Adam. During the prediction, the predicted image is cut into several blocks, and the error information is removed by corrosion expansion and Gaussian filtering after the image is spliced again. Experiments based on actual oil spill SAR datasets demonstrate the effectiveness of the modified AlexNet model compared with other approaches.


Assuntos
Poluição por Petróleo , Petróleo , Poluentes Químicos da Água , China , Monitoramento Ambiental , Petróleo/análise , Poluição por Petróleo/análise , Radar , Poluentes Químicos da Água/análise
5.
Microb Drug Resist ; 25(6): 791-798, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-30762463

RESUMO

Although case reports and clinical studies of linezolid (LZD)-resistant Enterococcus faecalis (LREF) have gradually increased in recent years, the relationship between LZD resistance and antibiotic consumption in hospital settings still remains unclear. In this study, we aimed to investigate the dynamic relationship between the yearly detection frequency of LREF clinical isolates and yearly consumption of LZD and vancomycin (VCM) over a 5-year period in a Chinese hospital setting. Antibiotic consumption data (LZD and VCM) from 2011 to 2015 were obtained from a computerized database and recalculated as the defined daily doses (DDDs) per 100 bed-days (DBD). All 268 E. faecalis clinical isolates were retrospectively collected from 2011 to 2015 in this hospital. LZD resistance mechanism and multilocus sequence typing of E. faecalis were determined by PCR. The annual detection frequency of LREF clinical isolates tested in this hospital was shown with 1.89% (1/53), 2% (1/50), 2.04% (1/49), 0% (0/45), and 7.04% (5/71), respectively, and the detection frequency of LZD-nonsusceptible E. faecalis (LNSEF; n = 59, including LZD-resistant and intermediate isolates) was determined with 26.42% (14/53), 34% (17/50), 16.33% (8/49), 22.22% (10/45), and 14.08% (10/71), respectively. Spearman correlation analysis revealed that LZD DBD significantly correlated positively with the detection frequency of LREF (r = 0.886, p = 0.019). Moreover, VCM DBD significantly correlated positively with the frequency of LNSEF (r = 0.943, p = 0.005). Furthermore, the detection frequency of optrA-positive E. faecalis also correlated positively with high LZD consumption load in this hospital setting. Conclusively, high LZD consumption load facilitates the development of LZD resistance and promotes the selection of optrA-positive E. faecalis clinical isolates under antibiotic pressure in a hospital setting.


Assuntos
Farmacorresistência Bacteriana/fisiologia , Enterococcus faecalis/efeitos dos fármacos , Infecções por Bactérias Gram-Positivas/tratamento farmacológico , Linezolida/efeitos adversos , Linezolida/uso terapêutico , Antibacterianos/efeitos adversos , Antibacterianos/uso terapêutico , Humanos , Testes de Sensibilidade Microbiana/métodos , Estudos Retrospectivos , Centros de Atenção Terciária , Vancomicina/uso terapêutico
6.
Front Microbiol ; 9: 2570, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30425691

RESUMO

Skin contains a large number of antigen presenting cells, making intradermal (ID) injection one of the most effective ways for vaccine administration. However, although current adjuvants may cause severe local reactions and inflammations in the skin, no adjuvant has been approved for ID vaccination so far. Here, we report that topical application of all-trans retinoic acid (ATRA), a vitamin A derivative produced in the human body, augmented cutaneous influenza vaccination. The adjuvant effects were evaluated in a murine vaccination/challenge model by using A/California/07/2009 pandemic vaccine (09V) or a seasonal influenza vaccine (SIV). ATRA drove a Th2-biased immune response, as demonstrated by profoundly elevated IgG1 titer rather than IgG2 titer. Combining ATRA with a non-ablative fractional laser (NAFL), which represents a new category of vaccine adjuvant utilizing physical stimuli to induce self-immune stimulators, further enhanced the efficacy of influenza vaccines with a more balanced Th1/Th2 immune response. The dual adjuvant strengthened cross-reactive immune responses against both homogenous and heterogeneous influenza viral strains. Analysis of gene expression profile showed that ATRA/NAFL stimulated upregulation of cytosolic nucleic acid sensors and their downstream factors, leading to a synergistic elevation of type I interferon expression. Consistent with this finding, knocking out IRF3 or IRF7, two key downstream regulatory factors in most nucleic acid sensing pathways, resulted in a significant decrease in the adjuvant effect of ATRA/NAFL. Thus, our study demonstrates that the self molecule ATRA could boost cutaneous influenza vaccination either alone or ideally in combination with NAFL.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA