Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
NPJ Sci Food ; 8(1): 2, 2024 Jan 05.
Artigo em Inglês | MEDLINE | ID: mdl-38182603

RESUMO

Sweet taste receptors found in oral and extra oral tissues play important roles in the regulation of many physiological functions. Studies have shown that urine volume increases during the lifetime exposure to artificial sweeteners. However, the detailed molecular mechanism and the general effects of different artificial sweeteners exposure on urine volume remain unclear. In this study, we investigated the relationship between urinary excretion and the sweet taste receptor expression in mice after three artificial sweeteners exposure in a higher or lower concentration via animal behavioral studies, western blotting, and real-time quantitative PCR experiment in rodent model. Our results showed that high dose of acesulfame potassium and saccharin can significantly enhance the urine output and there was a positive correlation between K+ and urination volume. The acesulfame potassium administration assay of T1R3 knockout mice showed that artificial sweeteners may affect the urine output directly through the sweet taste signaling pathway. The expression of T1R3 encoding gene can be up-regulated specifically in bladder but not in kidney or other organs we tested. Through our study, the sweet taste receptors, distributing in many tissues as bladder, were indicated to function in the enhanced urine output. Different effects of long-term exposure to the three artificial sweeteners were shown and acesulfame potassium increased urine output even at a very low concentration.

2.
Artigo em Inglês | MEDLINE | ID: mdl-29849705

RESUMO

The aim of the study was to investigate the protective effect of Danhong injection (DHI) on diabetic kidney disease and explore the potential mechanisms. Diabetic kidney disease was induced by unilateral nephrectomy, high-fat diet, and streptozotocin. After DHI administration, the renal function deterioration, 24-hour total urine protein excretion, and elevated serum lipid levels were reversed to some extent, and the renal pathological damage was also ameliorated. The KEGG pathway enrichment analysis demonstrated that the PPARγ signal pathway was significantly upregulated in DH group. And the increased expressions of PPARγ and UCP-1 were confirmed by immunohistochemistry, whereas the p38MAPK was significantly decreased. These data show that DHI could delay the progress of DKD, and the effect might be achieved in part by activating the PPARγ signaling pathway.

3.
Endocr Pract ; 14(9): 1075-83, 2008 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-19158046

RESUMO

OBJECTIVE: To identify triggers for islet neogenesis in humans that may lead to new treatments that address the underlying mechanism of disease for patients with type 1 or type 2 diabetes. METHODS: In an effort to identify bioactive human peptide sequences that might trigger islet neogenesis, we evaluated amino acid sequences within a variety of mammalian pancreas-specific REG genes. We evaluated GenBank, the Basic Local Alignment Search Tool algorithm, and all available proteomic databases and developed large-scale protein-to-protein interaction maps. Studies of peptides of interest were conducted in human pancreatic ductal tissue, followed by investigations in mice with streptozocin-induced diabetes. RESULTS: Our team has defined a 14-amino acid bioactive peptide encoded by a portion of the human REG3a gene we termed Human proIslet Peptide (HIP), which is well conserved among many mammals. Treatment of human pancreatic ductal tissue with HIP stimulated the production of insulin. In diabetic mice, administration of HIP improved glycemic control and significantly increased islet number. Bioinformatics analysis, coupled with biochemical interaction studies in a human pancreatic cell line, identified the human exostoses-like protein 3 (EXTL3) as a HIP-binding protein. HIP enhanced EXTL3 translocation from the membrane to the nucleus, in support of a model whereby EXTL3 mediates HIP signaling for islet neogenesis. CONCLUSION: Our data suggest that HIP may be a potential stimulus for islet neogenesis and that the differentiation of new islets is a process distinct from beta cell proliferation within existing islets. Human clinical trials are soon to commence to determine the effect of HIP on generating new islets from one's own pancreatic progenitor cells.


Assuntos
Diferenciação Celular , Ilhotas Pancreáticas/fisiologia , Fragmentos de Peptídeos/isolamento & purificação , Fragmentos de Peptídeos/fisiologia , Regeneração , Sequência de Aminoácidos , Animais , Antígenos de Neoplasias/química , Biomarcadores Tumorais/química , Diferenciação Celular/efeitos dos fármacos , Células Cultivadas , Bases de Dados de Proteínas , Diabetes Mellitus Experimental/patologia , Avaliação Pré-Clínica de Medicamentos , Humanos , Ilhotas Pancreáticas/efeitos dos fármacos , Ilhotas Pancreáticas/patologia , Lectinas Tipo C/química , Camundongos , Camundongos Endogâmicos C57BL , Dados de Sequência Molecular , N-Acetilglucosaminiltransferases/metabolismo , Proteínas Associadas a Pancreatite , Fragmentos de Peptídeos/química , Fragmentos de Peptídeos/farmacologia , Peptídeos/química , Peptídeos/farmacologia , Mapeamento de Interação de Proteínas , Regeneração/efeitos dos fármacos , Análise de Sequência de Proteína , Homologia de Sequência de Aminoácidos , Transdução de Sinais/efeitos dos fármacos , Transdução de Sinais/fisiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA