Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Front Chem ; 9: 746646, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34869202

RESUMO

Recently, drug delivery vehicles based on nanotechnology have significantly attracted the attention of researchers in the field of nanomedicine since they can achieve ideal drug release and biodistribution. Among the various organic or inorganic materials that used to prepare drug delivery vehicles for effective cancer treatment, serum albumin-based nanovehicles have been widely developed and investigated due to their prominent superiorities, including good biocompatibility, high stability, nontoxicity, non-immunogenicity, easy preparation, and functionalization, allowing them to be promising candidates for cancer diagnosis and therapy. This article reviews the recent advances on the applications of serum albumin-based nanovehicles in cancer diagnosis and therapy. We first introduce the essential information of bovine serum albumin (BSA) and human serum albumin (HSA), and discuss their drug loading strategies. We then discuss the different types of serum albumin-based nanovehicles including albumin nanoparticles, surface-functionalized albumin nanoparticles, and albumin nanocomplexes. Moreover, after briefly discussing the application of serum albumin-based nanovehicles used as the nanoprobes in cancer diagnosis, we also describe the serum albumin-based nanovehicle-assisted cancer theranostics, involving gas therapy, chemodynamic therapy (CDT), phototherapy (PTT/PDT), sonodynamic therapy (SDT), and other therapies as well as cancer imaging. Numerous studies cited in our review show that serum albumin-based nanovehicles possess a great potential in cancer diagnostic and therapeutic applications.

2.
J Nanobiotechnology ; 18(1): 101, 2020 Jul 20.
Artigo em Inglês | MEDLINE | ID: mdl-32690018

RESUMO

BACKGROUND: Cell membrane-based nanocarriers are promising candidates for delivering antitumor agents. The employment of a simple and feasible method to improve the tumor-targeting abilities of these systems is appealing for further application. Herein, we prepared a platelet membrane (PM)-camouflaged antitumor nanoparticle. The effects of irradiation pretreatment on tumor targeting of the nanomaterial and on its antitumor action were evaluated. RESULTS: The biomimetic nanomaterial constructed by indocyanine green, poly(d,l-lactide-co-glycolide), and PM is termed PINPs@PM. A 4-Gy X-ray irradiation increased the proportions of G2/M phase and Caveolin-1 content in 4T1 breast cancer cells, contributing to an endocytic enhancement of PINPs@PM. PINPs@PM produced hyperthermia and reactive oxygen species upon excitation by near-infrared irradiation, which were detrimental to the cytoplasmic lysosome and resulted in cell death. Irradiation pretreatment thus strengthened the antitumor activity of PINPs@PM in vitro. Mice experiments revealed that irradiation enhanced the tumor targeting capability of PINPs@PM in vivo. When the same dose of PINPs@PM was intravenously administered, irradiated mice had a better outcome than did mice without X-ray pretreatment. CONCLUSION: The study demonstrates an effective strategy combining irradiation pretreatment and PM camouflage to deliver antitumor nanoparticles, which may be instrumental for targeted tumor therapy.


Assuntos
Antineoplásicos , Plaquetas/citologia , Membrana Celular/química , Portadores de Fármacos/química , Nanopartículas , Animais , Antineoplásicos/química , Antineoplásicos/farmacologia , Antineoplásicos/efeitos da radiação , Linhagem Celular , Feminino , Humanos , Camundongos , Camundongos Endogâmicos BALB C , Nanopartículas/química , Nanopartículas/efeitos da radiação , Neoplasias Experimentais/patologia , Fototerapia , Raios X
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA