Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
J Immunol Res ; 2023: 5293677, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36969496

RESUMO

The morbidity of oral cancer is high in the world. Oridonin is a traditional Chinese medicine that can effectively inhibit oral squamous cell carcinoma (OSCC) growth, but its mechanism remains unclear. Our previous data showed that oridonin inhibited CAL-27 cell proliferation and promoted apoptosis. Herein, we explored the mechanism and target of oridonin in human OSCC through RNA sequencing and integration of multiple bioinformatics analysis strategies. Differences in gene expression can be analyzed with RNA sequencing. Kyoto Encyclopedia of Genes and Genomes (KEGG), Gene Ontology (GO), gene set enrichment analysis (GSEA), Disease Ontology (DO), and other enrichment analyses were used to evaluate differentially expressed genes (DEGs). Protein-protein interaction (PPI) networks were built via the STRING database. It was found that tumor necrosis factor (TNF) signaling pathway, cytokine-cytokine receptor interaction, and nuclear factor-kappa B (NF-kappaB) signaling pathway were associated with the therapeutic effects of oridonin in OSCC. Three key genes (BIRC3, TNFSF10, and BCL6) were found to associate with cell apoptosis in OSCC cells treated with oridonin. Quantitative PCR assays verified the expression of apoptosis-related DEGs: TNFSF10, BIRC3, AIFM2, BCL6, BCL2L2, and Bax. Western blots were employed for verifying proteins expression associated with DEGs: cleaved caspase 3, Bax, Bcl-w, anti-cIAP2, and anti-TRAIL. In conclusion, our findings reveal the molecular pathways and targets by which oridonin can treat and induce cytotoxic effects in OSCC: by affecting the signaling including TNF, NF-κB, and cytokine-cytokine receptor interaction and by regulating the key gene BIRC3, TNFSF10, and BCL6. It should be noted that further clinical trial validation is very necessary. Combined with current research trends, our existing research may provide innovative research drugs for the treatment of OSCC.


Assuntos
Carcinoma de Células Escamosas , Neoplasias de Cabeça e Pescoço , Neoplasias Bucais , Humanos , Carcinoma de Células Escamosas/tratamento farmacológico , Carcinoma de Células Escamosas/genética , Carcinoma de Células Escamosas/metabolismo , Transcriptoma , Carcinoma de Células Escamosas de Cabeça e Pescoço/tratamento farmacológico , Carcinoma de Células Escamosas de Cabeça e Pescoço/genética , RNA , NF-kappa B/metabolismo , Proteína X Associada a bcl-2 , Neoplasias Bucais/tratamento farmacológico , Neoplasias Bucais/genética , Neoplasias Bucais/metabolismo , Apoptose , Citocinas/genética , Biologia Computacional/métodos
2.
Eur J Pharmacol ; 942: 175522, 2023 Mar 05.
Artigo em Inglês | MEDLINE | ID: mdl-36681316

RESUMO

Prostate cancer (PCa) represents the second cause of cancer death in adult men. Aberrant overexpression of UHRF1 has been reported in several cancer types, and is regarded as a novel drug target for cancer therapy. Nevertheless, no UHRF1-targeted small molecule inhibitor has been testing in clinical trials. Traditional Chinese medicine (TCM) prescriptions have a long history for the treatment of PCa in China, and Chinese herbal extracts are important resources for new drug discovery. In the present study, we first screened the potentially effective components from the commonly used TCMs for PCa treatment in clinic by using network pharmacology together with molecular docking. We identified diosgenin (DSG) as a small molecule natural compound specifically targeting UHRF1 protein. Furthermore, we validated the results by using the wet lab experiments. DSG, by directly binding UHRF1 protein, induced UHRF1 protein degradation through the ubiquitin-proteasome pathway. Importantly, DSG induced UHRF1 protein degradation by reducing the protein interaction with a deubiquitinase USP7. DSG reduced the level of genomic DNA methylation, and elevated the expression of such tumor suppressor genes as p21, p16 and LXN, thereby resulting in cell cycle arrest, cellular senescence and the inhibition of xenograft tumor growth. We here presented the first report that DSG specifically induced UHRF1 protein degradation, thereby revealing a novel anticancer mechanism of DSG. Altogether, this present study provided a promising strategy to discover new molecule-targeted drugs from small-molecule natural products.


Assuntos
Neoplasias da Próstata , Ubiquitina-Proteína Ligases , Masculino , Humanos , Proteólise , Simulação de Acoplamento Molecular , Ubiquitina-Proteína Ligases/metabolismo , Neoplasias da Próstata/patologia , Metilação de DNA , Proteínas Estimuladoras de Ligação a CCAAT/metabolismo , Peptidase 7 Específica de Ubiquitina/genética , Peptidase 7 Específica de Ubiquitina/metabolismo
3.
Anticancer Drugs ; 33(1): e94-e102, 2022 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-34261913

RESUMO

Everolimus, an oral mammalian target of rapamycin complex 1 (mTORC1) inhibitor, presents a therapeutic option in metastatic renal cell carcinoma (RCC) patients who were intolerant to, or previously failed, immune- and vascular endothelial growth factor-targeted therapies. However, the onset of drug resistance limits its clinical use. One possible mechanism underpinning the resistance is that inhibiting mTORC1 by everolimus results in mTORC2-dependent activation of v-Akt murine thymoma viral oncogene (AKT) and upregulation of hypoxia-inducible transcription factors (HIF). Norcantharidin (NCTD) is a demethylated derivative of cantharidin with antitumor properties which is an active ingredient of the traditional Chinese medicine Mylabris. In this study, everolimus-resistant RCC cells (786-O-R) obtained by chronic everolimus treatment revealed higher level of HIF2α and over-activated mTORC2 pathway and NCTD inhibits cell proliferation in both everolimus-resistant and -sensitive RCC cells by arresting cell cycle in G0/G1 phase and reducing cell cycle-related proteins of C-Myc and cyclin D. Furthermore, NCTD shows synergistic anticancer effects combined with everolimus in everolimus-resistant 786-O-R cells. Mechanically, NCTD repressed both mTORC1 and mTORC2 signaling pathways as well as downstream molecular signaling pathways, such as p-4EBP1, p-AKT, HIF1α and HIF2α. Our findings provide sound evidence that combination of NCTD and everolimus is a potential therapeutic strategy for treating RCC and overcoming everolimus resistance by dual inhibition of mTORC1 and mTORC2.


Assuntos
Compostos Bicíclicos Heterocíclicos com Pontes/farmacologia , Carcinoma de Células Renais/patologia , Resistencia a Medicamentos Antineoplásicos/efeitos dos fármacos , Everolimo/farmacologia , Neoplasias Renais/patologia , Fatores de Transcrição Hélice-Alça-Hélice Básicos/efeitos dos fármacos , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Humanos , Alvo Mecanístico do Complexo 1 de Rapamicina/efeitos dos fármacos , Alvo Mecanístico do Complexo 2 de Rapamicina/efeitos dos fármacos , Proteínas Proto-Oncogênicas c-akt/efeitos dos fármacos , Transdução de Sinais/efeitos dos fármacos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA