Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
1.
Int J Pharm ; 651: 123778, 2024 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-38181990

RESUMO

To identify a replacement strategy for bronchial thermoplasty (BT) with non-invasive and free-of-severe side effect is urgently needed in the clinic for severe asthma treatment. In this study, PLGA-PEG@ICG@TRPV1 pAb (PIT) photothermal nanoparticles targeting bronchial TRPV1 were designed for photothermal therapy (PTT) against severe murine asthma induced by ovalbumin and lipopolysaccharide. PIT was formulated with a polyethylene glycol (PEG)-grafted poly (lactic-co-glycolic) acid (PLGA) coating as a skeleton structure to encapsulate indocyanine green (ICG) and was conjugated to the polyclonal antibody against transient receptor potential vanilloid 1 (TRPV1 pAb). The results revealed that PIT held good druggability due to its electronegativity and small diameter. PIT demonstrated great photothermal effects both in vivo and in vitro and exhibited good ability to target TRPV1 in vitro because of its selective cell uptake and specific cell toxicity toward TRPV1-overexpressing cells. The PIT treatment effectively reduced asthma symptoms in mice. This is evident from improvements in expiratory airflow limitation, significant decreases in inflammatory cell infiltration in the airways, and increases in goblet cell and columnar epithelial cell proliferation. In conclusion, PIT alleviates severe murine asthma symptoms through a combination of TRPV1 targeting and photothermal effects.


Assuntos
Antineoplásicos , Asma , Nanopartículas , Animais , Camundongos , Verde de Indocianina , Fototerapia/métodos , Ovalbumina , Lipopolissacarídeos , Nanopartículas/química , Polietilenoglicóis/química , Asma/tratamento farmacológico , Linhagem Celular Tumoral , Canais de Cátion TRPV
2.
Int J Mol Sci ; 24(22)2023 Nov 14.
Artigo em Inglês | MEDLINE | ID: mdl-38003496

RESUMO

Glioma treatment in traditional Chinese medicine has a lengthy history. Astragalus membranaceus, a traditional Chinese herb that is frequently utilized in therapeutic practice, is a component of many Traditional Chinese Medicine formulas that have been documented to have anti-glioma properties. Uncertainty persists regarding the molecular mechanism behind the therapeutic effects. Based on results from network pharmacology and molecular docking, we thoroughly identified the molecular pathways of Astragalus membranaceus' anti-glioma activities in this study. According to the findings of the enrichment analysis, 14 active compounds and 343 targets were eliminated from the screening process. These targets were mainly found in the pathways in cancer, neuroactive ligand-receptor interaction, protein phosphorylation, inflammatory response, positive regulation of phosphorylation, and inflammatory mediator regulation of Transient Receptor Potential (TRP) channels. The results of molecular docking showed that the active substances isoflavanone and 1,7-Dihydroxy-3,9-dimethoxy pterocarpene have strong binding affinities for the respective targets ESR2 and PTGS2. In accordance with the findings of our investigation, Astragalus membranaceus active compounds exhibit a multicomponent and multitarget synergistic therapeutic impact on glioma by actively targeting several targets in various pathways. Additionally, we propose that 1,7-Dihydroxy-3,9-dimethoxy pterocarpene and isoflavanone may be the main active ingredients in the therapy of glioma.


Assuntos
Medicamentos de Ervas Chinesas , Glioma , Astragalus propinquus , Simulação de Acoplamento Molecular , Farmacologia em Rede , Glioma/tratamento farmacológico , Ciclo-Oxigenase 2 , Medicina Tradicional Chinesa , Medicamentos de Ervas Chinesas/farmacologia
3.
Biomaterials ; 291: 121916, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-36410110

RESUMO

Cancer treatment currently still faces crucial challenges in therapeutic effectiveness, precision, and complexity. Photodynamic therapy (PDT) as a non-invasive tactic has earned widespread popularity for its excellent therapeutic output, flexibility, and restrained toxicity. Nonetheless, drawbacks, including low efficiency, poor cancer specificity, and limited therapeutic depth, remain considerable during the cancer treatment. Although great effort has been made to improve the performance, the overall efficiency and biosafety are still ambiguous and unable to meet urgent clinical needs. Herein, this study integrates merits from previous PDT strategies and develops a cancer-targeting, activatable, biosafe photosensitizer. Owing to excellent self-assembly ability, this photosensitizer can be conveniently prepared as multifunctional nano-photosensitizers, namely MBNPs, and applied to in vivo cancer phototheranostics in "all-in-one" mode. This study successfully verifies the mechanism of MBNPs, then deploys them to cell-based and in vivo cancer PDT. Based on the unique cancer microenvironment, MBNPs achieve precise distribution, accumulation, and activation towards the tumor, releasing methylene blue as a potent photosensitizer for phototherapy. The PDT outcome demonstrates MBNPs' superior cancer specificity, remarkable PDT efficacy, and negligible toxicity. Meanwhile, in vivo NIR fluorescence and photoacoustic imaging have been utilized to guide the PDT treatment synergistically. Additionally, the biosafety of the MBNPs-based PDT treatment is ensured, thus providing potential for future clinical studies.


Assuntos
Neoplasias , Fotoquimioterapia , Humanos , Fármacos Fotossensibilizantes/uso terapêutico , Contenção de Riscos Biológicos , Neoplasias/tratamento farmacológico , Microambiente Tumoral
4.
Pharmacol Res ; 176: 106080, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-35032663

RESUMO

Combination therapy system has become a promising strategy for achieving favorable antitumor efficacy. Herein, a novel oral drug delivery system with colon localization and tumor targeting functions was designed for orthotopic colon cancer chemotherapy and photothermal combinational therapy. The polydopamine coated nanodiamond (PND) was used as the photothermal carrier, through the coupling of sulfhydryl-polyethylene glycol-folate (SH-PEG-FA) on the surface of PND to achieve systematic colon tumor targeting, curcumin (CUR) was loaded as the model drug, and then coated with chitosan (CS) to achieve the long gastrointestinal tract retention and colon localization functions to obtain PND-PEG-FA/CUR@CS nanoparticles. It has high photothermal conversion efficiency and good photothermal stability and exhibited near-infrared (NIR) laser-responsive drug release behavior. Folate (FA) modification effectively promotes the intracellular uptake of nanoparticles by CT26 cells, and the combination of chemotherapy and photothermal therapy (CT/PTT) can enhance cytotoxicity. Compared with free CUR group, nanoparticles prolonged the gastrointestinal tract retention time, accumulated more in colon tumor tissues, and exhibited good photothermal effect in vivo. More importantly, the CT/PTT group exhibited satisfactory tumor growth inhibition effects with good biocompatibility in vivo. In summary, this oral drug delivery system is an efficient platform for chemotherapy and photothermal combinational therapy of orthotopic colon cancer.


Assuntos
Antineoplásicos Fitogênicos/administração & dosagem , Neoplasias do Colo/terapia , Curcumina/administração & dosagem , Ácido Fólico/administração & dosagem , Indóis/administração & dosagem , Nanodiamantes/administração & dosagem , Polietilenoglicóis/administração & dosagem , Polímeros/administração & dosagem , Administração Oral , Animais , Antineoplásicos Fitogênicos/química , Antineoplásicos Fitogênicos/farmacocinética , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Neoplasias do Colo/metabolismo , Terapia Combinada , Curcumina/química , Curcumina/farmacocinética , Liberação Controlada de Fármacos , Ácido Fólico/química , Ácido Fólico/farmacocinética , Indóis/química , Indóis/farmacocinética , Camundongos Endogâmicos BALB C , Nanodiamantes/química , Terapia Fototérmica , Polietilenoglicóis/química , Polietilenoglicóis/farmacocinética , Polímeros/química , Polímeros/farmacocinética
5.
Int J Mol Sci ; 21(5)2020 Mar 04.
Artigo em Inglês | MEDLINE | ID: mdl-32143437

RESUMO

Actin-depolymerizing factor (ADF) is a small class of actin-binding proteins that regulates the dynamics of actin in cells. Moreover, it is well known that the plant ADF family plays key roles in growth, development and defense-related functions. Results: Thirteen maize (Zea mays L., ZmADFs) ADF genes were identified using Hidden Markov Model. Phylogenetic analysis indicated that the 36 identified ADF genes in Physcomitrella patens, Arabidopsis thaliana, Oryza sativa japonica, and Zea mays were clustered into five groups. Four pairs of segmental genes were found in the maize ADF gene family. The tissue-specific expression of ZmADFs and OsADFs was analyzed using microarray data obtained from the Maize and Rice eFP Browsers. Five ZmADFs (ZmADF1/2/7/12/13) from group V exhibited specifically high expression in tassel, pollen, and anther. The expression patterns of 13 ZmADFs in seedlings under five abiotic stresses were analyzed using qRT-PCR, and we found that the ADFs mainly responded to heat, salt, drought, and ABA. Conclusions: In our study, we identified ADF genes in maize and analyzed the gene structure and phylogenetic relationships. The results of expression analysis demonstrated that the expression level of ADF genes was diverse in various tissues and different stimuli, including abiotic and phytohormone stresses, indicating their different roles in plant growth, development, and response to external stimulus. This report extends our knowledge to understand the function of ADF genes in maize.


Assuntos
Destrina/genética , Regulação da Expressão Gênica de Plantas , Estresse Fisiológico , Zea mays/genética , Actinas/metabolismo , Arabidopsis/genética , Bryopsida/genética , Cromossomos de Plantas/ultraestrutura , Destrina/metabolismo , Secas , Perfilação da Expressão Gênica , Estudos de Associação Genética , Genoma de Planta , Análise de Sequência com Séries de Oligonucleotídeos , Oryza/genética , Filogenia , Reguladores de Crescimento de Plantas/metabolismo , Pólen/química
6.
Life Sci ; 241: 117170, 2020 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-31838137

RESUMO

AIMS: In this study, we investigate the effect and underlying mechanism of hyperbaric oxygen (HBO) treatment on a model of repeated cerebral ischemia-reperfusion injury (IR). MAIN METHODS: Eighty rats were randomly separated into sham, vehicle, hyperbaric air (HBA; 0.25 MPa, 60 min), and HBO (0.25 MPa, 60 min) groups. Repeated cerebral IR was induced by ligating the right and left bilateral common carotid arteries for 10 min and then allowing reperfusion for 10 min. This pattern was repeated three times. The neuroprotective effects of HBO were assessed by animal behavior, neuron morphology, inflammatory markers, intracellular calcium ion content, and autophagy-related protein and gene expression. KEY FINDINGS: Our result showed that HBO improved learning and memory in the navigation trail and probe trail of the Morris water maze, and these findings were supported by the observation data from 2,3,5-Triphenyltet-razolium chloride staining, Nissl staining, and electron microscopic. Importantly, we found that HBO reduced excessive autophagy in the prefrontal cortex, which was evidenced by activating of the mammalian target of the rapamycin (mTOR) and 4E-BP1, as well as suppression of LC3II and ATG5. Moreover, HBO significantly inhibited the cerebral IR-induced inflammatory reaction. Furthermore, HBO treatment modulated autophagy pathway-related factors, including producing a decrease in the intracellular calcium ion concentration and p53 level; meanwhile, the levels of BDNF and p-Akt were increased. SIGNIFICANCE: Our results indicated that HBO protected against IR-induced neuron injury by attenuating autophagy, inflammation, and calcium overload. These results provide a new mechanism and laboratory evidence for clinical treatment of VD.


Assuntos
Autofagia , Isquemia Encefálica/complicações , Disfunção Cognitiva/prevenção & controle , Modelos Animais de Doenças , Oxigenoterapia Hiperbárica/métodos , Fármacos Neuroprotetores , Traumatismo por Reperfusão/complicações , Animais , Comportamento Animal , Disfunção Cognitiva/etiologia , Disfunção Cognitiva/patologia , Feminino , Masculino , Camundongos , Ratos , Ratos Sprague-Dawley
7.
BMC Neurosci ; 17: 2, 2016 Jan 05.
Artigo em Inglês | MEDLINE | ID: mdl-26733225

RESUMO

BACKGROUND: Periventricular leukomalacia (PVL) is the leading cause of neurological disabilities including motor and cognitive deficits in premature infants. Periventricular leukomalacia is characterized by damage to the white matter in the immature brain, but the mechanisms by which damage to immature white matter results in widespread deficits of cognitive and motor function are unclear. The thalamocortical system is crucial for human consciousness and cognitive functions, and impaired development of the cortico-thalamic projections in the neonatal period is implicated to contribute importantly to abnormalities of cognitive function in children with PVL. RESULTS: In this study, using a mouse model of PVL, we sought to test the hypothesis that PVL-like injury affects the different components of the thalamocortical circuitry that can be defined by vesicular glutamate transporters 1 and 2 (vGluT1 and vGluT2), both of which are required for glutamatergic synaptic transmission in the central nervous system. We combined immunocytochemistry and immuno-electron microscopy to investigate changes in cortico-thalamic synapses which were specifically identified by vGluT1 immunolabeling. We found that a drastic reduction in the density of vGluT1 labeled profiles in the somatosensory thalamus, with a reduction of 72-74 % in ventroposterior (VP) nucleus and a reduction of 42-82 % in thalamic reticular nucleus (RTN) in the ipsilateral side of PVL mice. We further examined these terminals at the electron microscopic level and revealed onefold-twofold decrease in the sizes of vGluT1 labeled corticothalamic terminals in VP and RTN. The present study provides anatomical and ultrastructural evidence to elucidate the cellular mechanisms underlying alteration of thalamic circuitry in a mouse model of PVL, and reveals that PVL-like injury has a direct impact on the corticothalamic projection system. CONCLUSIONS: Our findings provide the first set of evidence showing that the thalamocortical circuitry is affected and vulnerable in PVL mice, supporting a working model in which vGluT1 defined corticothalamic synapses are altered in PVL mice, and vGluT2 defined thalamocortical synapses are associated with such changes, leading to the compromised thalamocortical circuitry in the PVL mice. Our study demonstrates that the thalamocortical circuitry is highly vulnerable to hypoxia-ischemia in the PVL model, thus identifying a novel target site in PVL pathology.


Assuntos
Córtex Cerebral/ultraestrutura , Modelos Animais de Doenças , Hipóxia-Isquemia Encefálica/complicações , Leucomalácia Periventricular/patologia , Sinapses/ultraestrutura , Tálamo/ultraestrutura , Animais , Córtex Cerebral/metabolismo , Leucomalácia Periventricular/etiologia , Leucomalácia Periventricular/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Vias Neurais/metabolismo , Vias Neurais/ultraestrutura , Sinapses/metabolismo , Tálamo/metabolismo , Proteína Vesicular 1 de Transporte de Glutamato/metabolismo , Proteína Vesicular 2 de Transporte de Glutamato/metabolismo
8.
J Biochem Mol Toxicol ; 27(1): 17-27, 2013 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-23293059

RESUMO

Human stem cells and their derivatives could provide virtually unlimited sources of tissue for a wide range of toxicity models that could complement conventional animal models with more relevant, humanized versions. Human embryonic stem cells (hESCs) have already been proven valuable for drug/toxicity screens and mechanistic studies including analysis of disease pathway and developmental toxicity. Human-induced pluripotent stem cells (iPSCs), which are generated by reprogramming somatic cells back to become hESC-like cells, allow assays to be designed where the contribution of an individual's genetic background or environmental exposure history to toxicity response can be determined. Comprehensive profiling of hESC/iPSCs via genomics, proteomics, transcriptomics, and metabolomics could be used to elucidate pathway perturbations that underlie toxicity and disease, enabling the development of predictive assays for toxicity. While technological hurdles still exist for widespread use and implementation, incorporation of human stem cell based assays into drug discovery and toxicity testing offers the potential for safer, more customized medicines and more accurate risk assessment for environmental toxicants, as well as reduced costs and decreased use of animal models. We examine limitations and deficiencies of current toxicology approaches and how human stem cell based in vitro assays may overcome them. We describe how human stem cells are used for predictive toxicology. We also identify technological limitations that prevent stem cells from being integrated into standard practice, as well as new tools and technologies that may overcome them. We discuss research priorities that are most useful for transforming cell-based toxicology models into reality, and research areas in which stem cell technology could make substantial contributions to the development and implementation of stem cell based models for toxicity testing. Increased use of human in vitro models of toxicity could reduce the use of animals in safety and risk assessment studies and offers the potential to dramatically enhance our understanding of the molecular basis of toxicity, leading to improved human models and assays for predicting biological response to drugs and environmental hazards.


Assuntos
Descoberta de Drogas , Avaliação Pré-Clínica de Medicamentos/métodos , Ecotoxicologia/métodos , Células-Tronco/fisiologia , Linhagem Celular , Avaliação Pré-Clínica de Medicamentos/economia , Células-Tronco Embrionárias , Humanos , Células-Tronco Pluripotentes Induzidas , Testes de Toxicidade/métodos
9.
Ann Neurol ; 67(4): 526-33, 2010 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-20437588

RESUMO

OBJECTIVE: Thrombin mediates the life-threatening cerebral edema that occurs after intracerebral hemorrhage. Therefore, we examined the mechanisms of thrombin-induced injury to the blood-brain barrier (BBB) and subsequent mechanisms of BBB repair. METHODS: Intracerebroventricular injection of thrombin (20U) was used to model intraventricular hemorrhage in adult rats. RESULTS: Thrombin reduced brain microvascular endothelial cell (BMVEC) and perivascular astrocyte immunoreactivity-indicating either cell injury or death-and functionally disrupted the BBB as measured by increased water content and extravasation of sodium fluorescein and Evans blue dyes 24 hours later. Administration of nonspecific Src family kinase inhibitor (PP2) immediately after thrombin injections blocked brain edema and BBB disruption. At 7 to 14 days after thrombin injections, newborn endothelial cells and astrocytes were observed around cerebral vessels at the time when BBB permeability and cerebral water content resolved. Delayed administration of PP2 on days 2 through 6 after thrombin injections prevented resolution of the edema and abnormal BBB permeability. INTERPRETATION: Thrombin, via its protease-activated receptors, is postulated to activate Src kinase phosphorylation of molecules that acutely injure the BBB and produce edema. Thus, acute administration of Src antagonists blocks edema. In contrast, Src blockade for 2 to 6 days after thrombin injections is postulated to prevent resolution of edema and abnormal BBB permeability in part because Src kinase proto-oncogene members stimulate proliferation of newborn BMVECs and perivascular astrocytes in the neurovascular niche that repair the damaged BBB. Thus, Src kinases not only mediate acute BBB injury but also mediate chronic BBB repair after thrombin-induced injury.


Assuntos
Barreira Hematoencefálica , Edema Encefálico/prevenção & controle , Hemostáticos/efeitos adversos , Pirimidinas/uso terapêutico , Trombina/efeitos adversos , Quinases da Família src/antagonistas & inibidores , Animais , Antígenos de Superfície/metabolismo , Barreira Hematoencefálica/efeitos dos fármacos , Barreira Hematoencefálica/lesões , Barreira Hematoencefálica/fisiopatologia , Edema Encefálico/induzido quimicamente , Edema Encefálico/patologia , Bromodesoxiuridina/metabolismo , Permeabilidade Capilar/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Azul Evans , Fluoresceína , Regulação da Expressão Gênica/efeitos dos fármacos , Proteína Glial Fibrilar Ácida/metabolismo , Injeções Intraventriculares/métodos , Masculino , Ratos , Ratos Sprague-Dawley , Fatores de Tempo , Água/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA