Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Mais filtros

Métodos Terapêuticos e Terapias MTCI
Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Integr Cancer Ther ; 22: 15347354231213613, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38059303

RESUMO

BACKGROUND: Fucus vesiculosus-derived fucoidan, a multifunctional bioactive polysaccharide sourced from marine organisms, exhibits a wide range of therapeutic properties, including its anti-tumor effects. While previous research has reported on its anti-cancer potential, limited studies have explored its synergistic capabilities when combined with other natural bioactive ingredients. In this current study, we present the development of an integrative functional beverage, denoted as VMW-FC, which is composed of a fucoidan complex (FC) along with a blend of various herbal components, including vegetables (V), mulberries and fruits (M), and spelt wheat (W). OBJECTIVE: Colorectal cancer (CRC) remains a significant cause of mortality, particularly in metastatic cases. Therefore, the urgent need for novel alternative medicines that comprehensively inhibit CRC persists. In this investigation, we assess the impact of VMW-FC on CRC cell proliferation, cell cycle dynamics, metastasis, in vivo tumorigenesis, and potential side effects. METHODS: Cell growth was assessed using MTT and colony formation assays, while metastatic potential was evaluated through wound healing and transwell migration assays. The underlying signaling mechanisms were elucidated through qPCR and western blot analysis. In vivo tumor formation and potential side effects were evaluated using a subcutaneous tumor-bearing NOD/SCID mouse model. RESULTS: Our findings demonstrate that VMW-FC significantly impedes CRC proliferation and migration in a dose- and time-dependent manner. Furthermore, it induces sub-G1 cell cycle arrest and an increase in apoptotic cell populations, as confirmed through flow-cytometric analysis. Notably, VMW-FC also suppresses xenograft tumor growth in NOD/SCID mice without causing renal or hepatic toxicity. CONCLUSION: The integrative herbal concoction VMW-FC presents a promising approach for inhibiting CRC by slowing proliferation and migration, inducing cell cycle arrest and apoptosis, and suppressing markers associated with proliferation (Ki-67, PCNA, and CDKs) and epithelial-mesenchymal transition (EMT) (Vimentin, N-cadherin, and ß-catenin).


Assuntos
Neoplasias Colorretais , Animais , Camundongos , Humanos , Neoplasias Colorretais/metabolismo , Linhagem Celular Tumoral , Camundongos Endogâmicos NOD , Camundongos SCID , Transdução de Sinais , Polissacarídeos/farmacologia , Polissacarídeos/uso terapêutico , Proliferação de Células , Transição Epitelial-Mesenquimal , Movimento Celular
2.
BMC Cancer ; 23(1): 1, 2023 Jan 02.
Artigo em Inglês | MEDLINE | ID: mdl-36597025

RESUMO

BACKGROUND: Despite the advancement in chemotherapeutic drugs for colon cancer treatment, it is still a life-threatening disease worldwide due to drug resistance. Therefore, an urgently needed to develop novel drugs for colon cancer therapies. AGA is a combination of traditional Chinese medicine Antler's extract (A), Ganoderma lucidum (G), and Antrodia camphorata (A); it contains a lot of biomolecules like polysaccharides, fatty acids, and triterpenoids that are known to exerting anti-oxidative, anti-inflammatory, anti-microbial and anti-tumor activities in oral cancer. In this study, we investigate AGA anti-proliferative, anti-metastatic and apoptotic activity to explore its anti-cancer activity against colon cancer cells and its underlying mechanism. METHOD: Here, in-vitro studies were performed to determine the antiproliferative activity of AGA through MTT and colony formation assays. Wound healing and transwell migration assay were used to evaluate the metastasis. Flow cytometry and protein expression were used to investigate the involved molecular mechanism by evaluating the cell cycle and apoptosis. The in-vivo anti-cancerous activity of AGA was assessed by xenograft mice model of colon cancer cells. RESULTS: We found that AGA significantly inhibited the proliferative capacity and metastasis of colon cancer cells in-vitro. In addition, AGA induced cell cycle arrest in the sub-G1 phase through upregulating p21 and downregulating CDK2, CDK6 in SW620, and CDK4 in SW480 and HT29, respectively. Annexin-v assay indicated that colon cancer cells had entered early and late apoptosis after treatment with AGA. Furthermore, a mechanistic protein expressions study revealed that AGA in p53-dependent and independent regulated the apoptosis of colon cancer by downregulating the p53 protein expression in SW620 and SW480 cells but upregulating in a dose-dependent manner in HT29 cells and increasing the expression of Bax and caspase-9 to inhibit the colon cancer cells. In vivo study, we found that AGA significantly reduced the xenograft tumor growth in NOD/SCID mice with no adverse effect on the kidney and liver. CONCLUSION: Collectively, AGA has the potential to inhibit colon cancer through inhibiting proliferation, migration, and cell cycle kinase by upregulating p21 protein expression and promoting the apoptotic protein in a p53-dependent and independent manner.


Assuntos
Neoplasias do Colo , Proteína Supressora de Tumor p53 , Humanos , Animais , Camundongos , Pontos de Checagem da Fase G1 do Ciclo Celular , Proteína Supressora de Tumor p53/metabolismo , Camundongos Endogâmicos NOD , Camundongos SCID , Neoplasias do Colo/tratamento farmacológico , Neoplasias do Colo/patologia , Apoptose , Ciclo Celular , Proliferação de Células , Linhagem Celular Tumoral
3.
Cancers (Basel) ; 12(11)2020 Oct 31.
Artigo em Inglês | MEDLINE | ID: mdl-33142749

RESUMO

Traditional Chinese medicines Antler's extract (A) and Ganoderma lucidum (G) and Antrodia Camphorata (A) have been known to individually contain a plethora of bioactive factors including triterpenoids, polysaccharides etc., exerting various curative impacts such as anti-inflammatory, anti-oxidative, anti-atherosclerotic and anti-viral activities. However, their combinatorial therapeutic efficacy for oral cancer has not been investigated. Hence, we synthesized a robust cocktail called AGA and investigated its anti-oral cancer potential in vitro and in vivo. An MTT assay revealed the IC50 of AGA to be about 15 mg at 72 h. Therefore, 10 mg and 20 mg doses were selected to study the effect of AGA. The AGA significantly inhibited proliferation of oral cancer cells (HSC3, SAS, and OECM-1) in a dose- and time-dependent manner. AGA retarded cell cycle regulators (CDK4, CDK6, cyclin A, B1, D1 and E2) and apoptosis inhibitory protein Bcl-2, but enhanced pro-apoptotic protein Bax and a higher percentage of cells in Sub-G1 phase. Mechanistically, AGA suppressed all EMT markers; consequently, it decreased the migration ability of cancer cells. AGA significantly reduced xenograft tumor growth in nude mice with no adverse events in liver and renal toxicity. Conclusively, AGA strongly inhibited oral cancer through inducing apoptosis and inhibiting the migration and promotion of cell cycle arrest at subG1 phase, which may be mediated primarily via cocktail-contained triterpenoids and polysaccharides.

5.
PLoS One ; 11(11): e0166342, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27832180

RESUMO

Diabetic nephropathy is derived from long-term effects of high blood glucose on kidney function in type 2 diabetic patients. Several antidiabetic drugs and herbal medications have failed to prevent episodes of DN. Hence, this study aimed to further investigate the renal injury-reducing effect of antidiabetic CmNo1, a novel combination of powders of fruiting bodies and mycelia of Cordyceps militaris. After being administered with streptozotocin-nicotinamide and high-fat-diet, the diabetic nephropathy mouse model displayed elevated blood glucose and renal dysfunction markers including serum creatinine and kidney-to-body weight ratio. These elevated markers were significantly mitigated following 8 weeks CmNo1 treatment. Moreover, the chronic hyperglycemia-induced pathological alteration in renal tissue were also ameliorated. Besides, immunohistochemical study demonstrated a substantial reduction in elevated levels of carboxymethyl lysine, an advanced glycation end product. Elevated collagenous deposition in DN group was also attenuated through CmNo1 administration. Moreover, the enhanced levels of transforming growth factor-ß1, a fibrosis-inducing protein in glomerulus were also markedly dampened. Furthermore, auxiliary risk factors in DN like serum triglycerides and cholesterol were found to be increased but were decreased by CmNo1 treatment. Conclusively, the results suggests that CmNo1 exhibit potent and efficacious renoprotective action against hyperglycemia-induced DN.


Assuntos
Produtos Biológicos/uso terapêutico , Cordyceps/química , Diabetes Mellitus Experimental/tratamento farmacológico , Diabetes Mellitus Tipo 2/tratamento farmacológico , Nefropatias Diabéticas/tratamento farmacológico , Hipoglicemiantes/uso terapêutico , Rim/efeitos dos fármacos , Animais , Produtos Biológicos/química , Colágeno/análise , Diabetes Mellitus Experimental/sangue , Diabetes Mellitus Experimental/complicações , Diabetes Mellitus Experimental/fisiopatologia , Diabetes Mellitus Tipo 2/sangue , Diabetes Mellitus Tipo 2/complicações , Diabetes Mellitus Tipo 2/fisiopatologia , Nefropatias Diabéticas/sangue , Nefropatias Diabéticas/complicações , Nefropatias Diabéticas/fisiopatologia , Carpóforos/química , Produtos Finais de Glicação Avançada/análise , Glicogênio/análise , Hipoglicemiantes/química , Rim/fisiopatologia , Testes de Função Renal , Camundongos , Camundongos Endogâmicos C57BL , Micélio/química , Estreptozocina , Fator de Crescimento Transformador beta1/análise
6.
Artigo em Inglês | MEDLINE | ID: mdl-27143981

RESUMO

Antrodia camphorata has previously demonstrated the efficacy in treating cancer and anti-inflammation. In this study, we are the first to evaluate Antrodia camphorata alcohol extract (ACAE) for osteoporosis recovery in vitro with preosteoblast cells (MC3T3-E1) and in vivo with an osteoporosis mouse model established in our previous studies, ovariectomized senescence accelerated mice (OVX-SAMP8). Our results demonstrated that ACAE treatment was slightly cytotoxic to preosteoblast at 25 µg/mL, by which the osteogenic gene expression (RUNX2, OPN, and OCN) was significantly upregulated with an increased ratio of OPG to RANKL, indicating maintenance of the bone matrix through inhibition of osteoclastic pathway. Additionally, evaluation by Alizarin Red S staining showed increased mineralization in ACAE-treated preosteoblasts. For in vivo study, our results indicated that ACAE inhibits bone loss and significantly increases percentage bone volume, trabecular bone number, and bone mineral density in OVX-SAMP8 mice treated with ACAE. Collectively, in vitro and in vivo results showed that ACAE could promote osteogenesis and prevent bone loss and should be considered an evidence-based complementary and alternative medicine for osteoporosis therapy through the maintenance of bone health.

7.
J Diabetes Res ; 2015: 723190, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26258146

RESUMO

Diabetes mellitus (DM) is currently ranked among leading causes of death worldwide in which type 2 DM is reaching an epidemic proportion. Hypoglycemic medications for type 2 DM have either proven inadequate or posed adverse effects; therefore, the Chinese herbal products are under investigation as an alternative treatment. In this study, a novel combination of fruiting body and mycelia powder of herbal Cordyceps militaris number 1 (CmNo1) was administered to evaluate their potential hypoglycemic effects in high-fat diet- (HFD-) induced type 2 DM in C57BL/6J mice. Body weight, fasting blood glucose (FBG), oral glucose tolerance test (OGTT), and blood biochemistry indexes were measured. Results indicated that CmNo1 lowered the blood glucose level by increasing insulin sensitivity, while no change in body weight was observed. Increased protein expression of IRS-1, pIRS-1, AKT, pAKT, and GLUT-4 in skeletal muscle and adipose tissue was found indicating restoration of insulin signaling. Additionally, PPAR-γ expression in adipose tissue restored the triglyceride and cholesterol levels. Finally, our results suggest that CmNo1 possesses strong hypoglycemic, anticholesterolemic, and antihypertriglyceridemic actions and is more economical alternate for DM treatment.


Assuntos
Glicemia/efeitos dos fármacos , Cordyceps , Diabetes Mellitus Tipo 2/metabolismo , Carpóforos , Hipoglicemiantes/farmacologia , Micélio , Preparações de Plantas/farmacologia , Tecido Adiposo/efeitos dos fármacos , Tecido Adiposo/metabolismo , Animais , Glicemia/metabolismo , Western Blotting , Colesterol/metabolismo , Dieta Hiperlipídica , Modelos Animais de Doenças , Teste de Tolerância a Glucose , Transportador de Glucose Tipo 4/efeitos dos fármacos , Transportador de Glucose Tipo 4/metabolismo , Insulina/metabolismo , Proteínas Substratos do Receptor de Insulina/efeitos dos fármacos , Proteínas Substratos do Receptor de Insulina/metabolismo , Resistência à Insulina , Camundongos , Camundongos Endogâmicos C57BL , Músculo Esquelético/efeitos dos fármacos , Músculo Esquelético/metabolismo , PPAR gama/efeitos dos fármacos , PPAR gama/metabolismo , Fosforilação/efeitos dos fármacos , Proteínas Proto-Oncogênicas c-akt/efeitos dos fármacos , Proteínas Proto-Oncogênicas c-akt/metabolismo , Triglicerídeos/metabolismo
8.
Artigo em Inglês | MEDLINE | ID: mdl-24069046

RESUMO

The aim of this study is to examine the therapeutic potential of deep sea water (DSW) on osteoporosis. Previously, we have established the ovariectomized senescence-accelerated mice (OVX-SAMP8) and demonstrated strong recovery of osteoporosis by stem cell and platelet-rich plasma (PRP). Deep sea water at hardness (HD) 1000 showed significant increase in proliferation of osteoblastic cell (MC3T3) by MTT assay. For in vivo animal study, bone mineral density (BMD) was strongly enhanced followed by the significantly increased trabecular numbers through micro-CT examination after a 4-month deep sea water treatment, and biochemistry analysis showed that serum alkaline phosphatase (ALP) activity was decreased. For stage-specific osteogenesis, bone marrow-derived stromal cells (BMSCs) were harvested and examined. Deep sea water-treated BMSCs showed stronger osteogenic differentiation such as BMP2, RUNX2, OPN, and OCN, and enhanced colony forming abilities, compared to the control group. Interestingly, most untreated OVX-SAMP8 mice died around 10 months; however, approximately 57% of DSW-treated groups lived up to 16.6 months, a life expectancy similar to the previously reported life expectancy for SAMR1 24 months. The results demonstrated the regenerative potentials of deep sea water on osteogenesis, showing that deep sea water could potentially be applied in osteoporosis therapy as a complementary and alternative medicine (CAM).

9.
Artigo em Inglês | MEDLINE | ID: mdl-21785640

RESUMO

This study was carried out to provide a platform for the pre-clinical evaluation of anti-cancer properties of a unique CAM (complementary and alternative medicine) agent, Antrodia camphorata alcohol extract (ACAE), in a mouse model with the advantageous non-invasive in vivo bioluminescence molecular imaging technology. In vitro analyses on the proliferation, migration/invasion, cell cycle and apoptosis were performed on ACAE-treated non-small cell lung cancer cells, H441GL and control CGL1 cells. In vivo, immune-deficient mice were inoculated subcutaneously with H441GL followed by oral gavages of ACAE. The effect of ACAE on tumor progression was monitored by non-invasive bioluminescence imaging. The proliferation and migration/invasion of H441GL cells were inhibited by ACAE in a dose-dependent manner. In addition, ACAE induced cell cycle arrest at G0/G1 phase and apoptosis in H441GL cells as shown by flow cytometric analysis, Annexin-V immunoflourescence and DNA fragmentation. In vivo bioluminescence imaging revealed that tumorigenesis was significantly retarded by oral treatment of ACAE in a dose-dependent fashion. Based on our experimental data, ACAE contains anti-cancer properties and could be considered as a potential CAM agent in future clinical evaluation.

10.
Cancer Lett ; 233(2): 315-27, 2006 Feb 28.
Artigo em Inglês | MEDLINE | ID: mdl-15882924

RESUMO

We have previously demonstrated that a UVC-induced tumorigenic HeLa x skin fibroblast cell line could be induced to form a more normal phenotypic state ('reversion'), including loss of IAP expression. We have now used the loss of IAP expression to monitor the enhancement of this reversion in the cervical cancer cell line, HeLa, by a traditional Chinese herb medicine (TCM), Yigan Kang (YGK). IAP level decreased, and the reversion frequency increased, in a dose-dependent manner at concentrations of YGK of more than 10 mg. YGK significantly repressed E6/E7 oncogenes at the transcriptional level, with subsequent reactivation of p53 and p21 expression (P<0.01). YGK had little effect on the cell cycle of HeLa cells and slightly increased the apoptotic cell death between 20 and 40 mg. In vivo, tumorigenicity studies were performed using six different animal experimental protocols, which demonstrated that YGK was effective at inducing reversion of the tumorigenic phenotype, with YGK-treated HeLa cells showing much less aggressive tumor growth than untreated cells. YGK may raise the possibility of the continuing management of some cancers as a chronic condition in which the malignant behavior of the tumor cells is constrained.


Assuntos
Transformação Celular Neoplásica/efeitos dos fármacos , Medicina Tradicional Chinesa , Proteína Supressora de Tumor p53/metabolismo , Fosfatase Alcalina/metabolismo , Animais , Ciclo Celular/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Transformação Celular Neoplásica/metabolismo , Células HeLa/efeitos dos fármacos , Células HeLa/patologia , Humanos , Intestinos/enzimologia , Camundongos , Camundongos Endogâmicos NOD , Camundongos SCID , Proteína Supressora de Tumor p53/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA