Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Nat Commun ; 14(1): 2498, 2023 04 29.
Artigo em Inglês | MEDLINE | ID: mdl-37120615

RESUMO

The survival of malignant tumors is highly dependent on their intrinsic self-defense pathways such as heat shock protein (HSP) during cancer therapy. However, precisely dismantling self-defenses to amplify antitumor potency remains unexplored. Herein, we demonstrate that nanoparticle-mediated transient receptor potential vanilloid member 1 (TRPV1) channel blockade potentiates thermo-immunotherapy via suppressing heat shock factor 1 (HSF1)-mediated dual self-defense pathways. TRPV1 blockade inhibits hyperthermia-induced calcium influx and subsequent nuclear translocation of HSF1, which selectively suppresses stressfully overexpressed HSP70 for enhancing thermotherapeutic efficacy against a variety of primary, metastatic and recurrent tumor models. Particularly, the suppression of HSF1 translocation further restrains the transforming growth factor ß (TGFß) pathway to degrade the tumor stroma, which improves the infiltration of antitumor therapeutics (e.g. anti-PD-L1 antibody) and immune cells into highly fibrotic and immunosuppressive pancreatic cancers. As a result, TRPV1 blockade retrieves thermo-immunotherapy with tumor-eradicable and immune memory effects. The nanoparticle-mediated TRPV1 blockade represents as an effective approach to dismantle self-defenses for potent cancer therapy.


Assuntos
Antineoplásicos , Hipertermia Induzida , Canais de Potencial de Receptor Transitório , Humanos , Recidiva Local de Neoplasia , Resposta ao Choque Térmico , Imunoterapia , Fatores de Transcrição de Choque Térmico/genética , Canais de Cátion TRPV/genética
2.
Acta Biomater ; 155: 564-574, 2023 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-36328127

RESUMO

Transition-metal chalcogenides, such as noble metal chalcogenides, hold tremendous potential as efficient agents for photo-induced cancer theranostics due to their unique physicochemical properties. However, a critical bottleneck still lies in exploring simple and controllable methods to synthesize noble metal chalcogenides especially PtS for in vivo photo-induced cancer imaging and simultaneous therapy. Herein, we proposed the albumin-templated synthesis of size-controllable platinum (II) sulfide nanodots (PtS-NDs) for multimodal cancer imaging and potent photothermal therapy. PtS-NDs were precisely synthesized with a tunable size ranging from 2.1 nm to 4.5 nm through a thermodynamically controlled growth inside albumin nanocages. PtS-NDs yielded significant near-infrared (NIR) absorbance and outstanding photothermal conversion under NIR laser irradiation, as well as effective resistance to photobleaching, thereby generating remarkable in vivo photoacoustic signals and distinct hyperthermia at tumor site. Moreover, these nanodots possessed efficient cellular uptake and tumor targeting capabilities in a size-dependent manner, thus leading to controllable diagnostic and thermo-therapeutic efficacy. Specifically, PtS-NDs with core diameter of 4.5 nm displayed preferable in vivo photoacoustic and CT imaging with high sensitivity, spatially and anatomically enhanced imaging contrast, together with hyperthermia mediated tumor ablation. Thus, the albumin-templated biomimetic synthesis provided an insightful strategy on fabricating theranostic PtS-NDs for potential clinical applications. STATEMENT OF SIGNIFICANCE: Noble metal chalcogenides especially PtS are of particular importance in the field of precise nanomedicine to improve both accuracy of cancer diagnosis and efficiency of tumor treatment. However, the intensively preclinical investigation of PtS was limited due to the lack of simple and controllable synthetic methods. Here, we report an albumin-templated biomineralization synthesis of platinum (II) sulfide nanodots (PtS-NDs). Specifically, albumin-templated biomineralization of PtS-NDs was induced by the electrostatic interactions between albumin and Pt2+, followed by the nucleation and growth inside the albumin nanocages. The resulting PtS-NDs showed good dispersibility and biosafety, as well as size-dependent photophysical properties and biological behaviors. Therefore, albumin-based biomineralization is a promising and safe strategy to facilely fabricate Pt-based chalcogenide for tumor theranostics.


Assuntos
Nanopartículas , Neoplasias , Técnicas Fotoacústicas , Humanos , Platina/farmacologia , Medicina de Precisão , Linhagem Celular Tumoral , Nanomedicina Teranóstica/métodos , Neoplasias/diagnóstico por imagem , Neoplasias/tratamento farmacológico , Albuminas , Fototerapia/métodos , Sulfetos/farmacologia , Sulfetos/química , Nanopartículas/química , Técnicas Fotoacústicas/métodos
3.
J Control Release ; 350: 761-776, 2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-36063961

RESUMO

Arsenotherapy has been clinically exploited to treat a few types of solid tumors despite of acute promyelocytic leukemia using arsenic trioxide (ATO), however, its efficacy is hampered by inadequate delivery of ATO into solid tumors owing to the absence of efficient and biodegradable vehicles. Precise spatiotemporal control of subcellular ATO delivery for potent arsenotherapy thus remains challengeable. Herein, we report the self-activated arsenic manganite nanohybrids for high-contrast magnetic resonance imaging (MRI) and arsenotherapeutic synergy on triple-negative breast cancer (TNBC). The nanohybrids, composed of arsenic­manganese-co-biomineralized nanoparticles inside albumin nanocages (As/Mn-NHs), switch signal-silent background to high proton relaxivity, and simultaneously afford remarkable subcellular ATO level in acidic and glutathione environments, together with reduced ATO resistance against tumor cells. Then, the nanohybrids enable in vivo high-contrast T1-weighted MRI signals in various tumor models for delineating tumor boundary, and simultaneously yield efficient arsenotherapeutic efficacy through multiple apoptotic pathways for potently suppressing subcutaneous and orthotopic breast models. As/Mn-NHs exhibited the maximum tumor-to-normal tissue (T/N) contrast ratio of 205% and tumor growth inhibition rate of 88% at subcutaneous 4T1 tumors. These nanohybrids further yield preferable synergistic antitumor efficacy against both primary and metastatic breast tumors upon combination with concurrent thermotherapy. More importantly, As/Mn-NHs considerably induce immunogenic cell death (ICD) effect to activate the immunogenically "cold" tumor microenvironment into "hot" one, thus synergizing with immune checkpoint blockade to yield the strongest tumor inhibition and negligible metastatic foci in the lung. Our study offers the insight into clinically potential arsenotherapeutic nanomedicine for potent therapy against solid tumors.


Assuntos
Antineoplásicos , Arsênio , Arsenicais , Neoplasias , Albuminas , Apoptose , Arsênio/farmacologia , Arsênio/uso terapêutico , Trióxido de Arsênio/farmacologia , Trióxido de Arsênio/uso terapêutico , Arsenicais/uso terapêutico , Linhagem Celular Tumoral , Glutationa/farmacologia , Humanos , Inibidores de Checkpoint Imunológico , Manganês , Compostos de Manganês , Neoplasias/tratamento farmacológico , Óxidos , Prótons , Microambiente Tumoral
4.
Nutr Cancer ; 74(10): 3761-3768, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35762420

RESUMO

Selenomethionine (SeMet) did not prevent prostate cancer in the SELECT trial and in two hormone-driven rat models. However, we have shown that daily oral bolus administration of next-generation selenium forms, methylseleninic acid (MSeA) and Se-methylselenocysteine (MSeC) at 3 mg Se/kg body weight, inhibits prostate carcinogenesis in the TRAMP and pten-deficient mouse models and In Vivo growth of human prostate cancer cells. Here, we determined whether these Se forms prevent prostate cancer in a chemically induced-androgen promoted carcinogenesis rat model in which SeMet was not preventive. WU rats were treated with methylnitrosourea, and one week later, slow-release testosterone implants when they were randomized to groups fed AIN-93M diet supplemented with 3 ppm selenium as MSeA or MSeC or control diet. Mean survival, tumor incidence in all accessory sex glands combined (dorsolateral and anterior prostate plus seminal vesicle) and the incidence of tumors confined to dorsolateral and/or anterior prostate were not statistically significantly different among the groups. Thus, MSeA and MSeC feeding was not preventive in this model. The contrast with the inhibitory effects of MSeA and MSeC in mouse models may be due to differences in carcinogenic mechanisms, selenium dosage, delivery mode, and pharmacokinetics or fundamental rat-mouse differences in selenium metabolism.


Assuntos
Neoplasias da Próstata , Selênio , Androgênios/metabolismo , Animais , Antioxidantes/metabolismo , Carcinogênese/induzido quimicamente , Carcinógenos , Dieta , Modelos Animais de Doenças , Humanos , Masculino , Camundongos , Compostos Organosselênicos , Próstata/metabolismo , Neoplasias da Próstata/induzido quimicamente , Neoplasias da Próstata/metabolismo , Neoplasias da Próstata/prevenção & controle , Ratos , Selênio/metabolismo , Selênio/farmacologia , Selenocisteína/análogos & derivados , Selenocisteína/metabolismo , Selenocisteína/farmacologia , Selenometionina/metabolismo , Selenometionina/farmacologia
5.
Adv Mater ; 33(32): e2100795, 2021 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-34219286

RESUMO

A critical issue in photodynamic therapy (PDT) is inadequate reactive oxygen species (ROS) generation in tumors, causing inevitable survival of tumor cells that usually results in tumor recurrence and metastasis. Existing photosensitizers frequently suffer from relatively low light-to-ROS conversion efficiency with far-red/near-infrared (NIR) light excitation due to low-lying excited states that lead to rapid non-radiative decays. Here, a neutral Ir(III) complex bearing distyryl boron dipyrromethene (BODIPY-Ir) is reported to efficiently produce both ROS and hyperthermia upon far-red light activation for potentiating in vivo tumor suppression through micellization of BODIPY-Ir to form "Micelle-Ir". BODIPY-Ir absorbs strongly at 550-750 nm with a band maximum at 685 nm, and possesses a long-lived triplet excited state with sufficient non-radiative decays. Upon micellization, BODIPY-Ir forms J-type aggregates within Micelle-Ir, which boosts both singlet oxygen generation and the photothermal effect through the high molar extinction coefficient and amplification of light-to-ROS/heat conversion, causing severe cell apoptosis. Bifunctional Micelle-Ir that accumulates in tumors completely destroys orthotopic 4T1 breast tumors via synergistic PDT/photothermal therapy (PTT) damage under light irradiation, and enables remarkable suppression of metastatic nodules in the lungs, together without significant dark cytotoxicity. The present study offers an emerging approach to develop far-red/NIR photosensitizers toward potent cancer therapy.


Assuntos
Complexos de Coordenação/química , Raios Infravermelhos , Irídio/química , Micelas , Fotoquimioterapia/métodos , Terapia Fototérmica/métodos , Animais , Compostos de Boro/química , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Sobrevivência Celular/efeitos da radiação , Complexos de Coordenação/farmacologia , Complexos de Coordenação/uso terapêutico , Humanos , Camundongos , Neoplasias/tratamento farmacológico , Neoplasias/terapia , Oxigênio Singlete/química , Oxigênio Singlete/metabolismo
7.
Adv Mater ; : e1801216, 2018 Jun 03.
Artigo em Inglês | MEDLINE | ID: mdl-29862592

RESUMO

High-performance photosensitizers are highly desired for achieving selective tumor photoablation in the field of precise cancer therapy. However, photosensitizers frequently suffer from limited tumor suppression or unavoidable tumor regrowth due to the presence of residual tumor cells surviving in phototherapy. A major challenge still remains in exploring an efficient approach to promote dramatic photoconversions of photosensitizers for maximizing the anticancer efficiency. Here, a rational design of boron dipyrromethene (BDP)-based conjugated photosensitizers (CPs) that can induce dually cooperative phototherapy upon light exposure is demonstrated. The conjugated coupling of BDP monomers into dimeric BDP (di-BDP) or trimeric BDP (tri-BDP) induces photoconversions from fluorescence to singlet-to-triplet or nonradiative transitions, together with distinctly redshifted absorption into the near-infrared region. In particular, tri-BDP within nanoparticles shows preferable conversions into both primary thermal effect and minor singlet oxygen upon near-infrared light exposure, dramatically achieving tumor photoablation without any regrowth through their cooperative anticancer efficiency caused by their dominant late apoptosis and moderate early apoptosis. This rational design of CPs can serve as a valuable paradigm for cooperative cancer phototherapy in precision medicine.

8.
ACS Nano ; 11(12): 12134-12144, 2017 12 26.
Artigo em Inglês | MEDLINE | ID: mdl-29141151

RESUMO

Stimuli-responsive nanostructures have shown great promise for intracellular delivery of anticancer compounds. A critical challenge remains in the exploration of stimuli-responsive nanoparticles for fast cytoplasmic delivery. Herein, near-infrared (NIR) light-responsive nanoparticles were rationally designed to generate highly efficient cytoplasmic delivery of anticancer agents for synergistic thermo-chemotherapy. The drug-loaded polymeric nanoparticles of selenium-inserted copolymer (I/D-Se-NPs) were rapidly dissociated in several minutes through reactive oxygen species (ROS)-mediated selenium oxidation upon NIR light exposure, and this irreversible dissociation of I/D-Se-NPs upon such a short irradiation promoted continuous drug release. Moreover, I/D-Se-NPs facilitated cytoplasmic drug translocation through ROS-triggered lysosomal disruption and thus resulted in highly preferable distribution to the nucleus even in 5 min postirradiation, which was further integrated with light-triggered hyperthermia for achieving synergistic tumor ablation without tumor regrowth.


Assuntos
Antineoplásicos/química , Citoplasma/química , Doxorrubicina/química , Sistemas de Liberação de Medicamentos , Raios Infravermelhos , Nanopartículas/química , Polímeros/química , Animais , Antineoplásicos/metabolismo , Antineoplásicos/farmacologia , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Citoplasma/metabolismo , Doxorrubicina/metabolismo , Doxorrubicina/farmacologia , Ensaios de Seleção de Medicamentos Antitumorais , Humanos , Neoplasias Mamárias Experimentais/tratamento farmacológico , Neoplasias Mamárias Experimentais/metabolismo , Neoplasias Mamárias Experimentais/patologia , Camundongos , Camundongos Endogâmicos BALB C , Estrutura Molecular , Nanopartículas/metabolismo , Polímeros/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Selênio/química , Selênio/metabolismo
9.
Adv Mater ; 29(19)2017 May.
Artigo em Inglês | MEDLINE | ID: mdl-28295684

RESUMO

Photoconversion tunability of fluorophore dye is of great interest in cancer nanomedicine such as fluorescence imaging, photodynamic therapy (PDT), and photothermal therapy (PTT). Herein, this paper reports wavelength-dependent photoconversional polymeric vesicles of boron dipyrromethene (Bodipy) fluorophore for either PDT under 660 nm irradiation or PTT under 785 nm irradiation. After being assembled within polymeric vesicles at a high drug loading, Bodipy molecules aggregate in the conformations of both J-type and H-type, thereby causing red-shifted absorption into near-infrared region, ultralow radiative transition, and ideal resistance to photobleaching. Such vesicles further possess enhanced blood circulation, preferable tumor accumulation, as well as superior cell uptake as compared to free Bodipy. In particular, the vesicles mainly generate abundant intracellular singlet oxygen for PDT treatment under 660 nm irradiation, while they primarily produce a potent hyperthermia for PTT with tumor ablation through singlet oxygen-synergized photothermal necrosis under 785 nm irradiation. This approach provides a facile and general strategy to tune photoconversion characteristics of fluorophore dyes for wavelength-dependent photoinduced cancer therapy.


Assuntos
Fotodegradação , Linhagem Celular Tumoral , Humanos , Hipertermia Induzida , Nanomedicina , Fotoquimioterapia
10.
ACS Nano ; 11(2): 1848-1857, 2017 02 28.
Artigo em Inglês | MEDLINE | ID: mdl-28117993

RESUMO

Ag2S nanoparticles are increasingly important in biomedicine, such as in cancer imaging. However, there has been only limited success in the exploration of theranostic Ag2S nanoparticles for photoinduced cancer imaging and simultaneous therapy. Here we report size-dependent Ag2S nanodots (NDs) with well-defined nanostructure as a theranostic agent for multimodal imaging and simultaneous photothermal therapy. The NDs are precisely synthesized through carefully controlled growth of Ag2S in hollow human serum albumin nanocages. These NDs produce effective fluorescence in second near-infrared (NIR-II) region, distinct photoacoustic intensity, and good photothermal conversion in a size-dependent manner under light irradiation, thereby generating sufficient in vivo fluorescence and photoacoustic signals as well as potent hyperthermia at tumors. Moreover, Ag2S NDs possess ideal resistance to photobleaching, effective cellular uptake, preferable tumor accumulation, and in vivo elimination, thus facilitating NIR-II fluorescence/photoacoustics imaging with both ultrasensitivity and microscopic spatial resolution and simultaneous photothermal tumor ablation. These findings provide insight into the clinical potential of Ag2S nanodots for cancer theranostics.


Assuntos
Imagem Multimodal , Nanoestruturas/química , Imagem Óptica , Fototerapia , Pontos Quânticos/química , Compostos de Prata/química , Animais , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Humanos , Raios Infravermelhos , Camundongos , Neoplasias Experimentais/diagnóstico por imagem , Tamanho da Partícula , Processos Fotoquímicos , Porosidade , Albumina Sérica Humana/química , Compostos de Prata/síntese química , Compostos de Prata/farmacologia , Propriedades de Superfície
11.
Small ; 13(6)2017 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-27879041

RESUMO

Smart nanoparticles are increasingly important in a variety of applications such as cancer therapy. However, it is still a major challenge to develop light-responsive nanoparticles that can maximize the potency of synergistic thermo-chemotherapy under light irradiation. Here, spatially confined cyanine-anchored silica nanochannels loaded with chemotherapeutic doxorubicin (CS-DOX-NCs) for light-driven synergistic cancer therapy are introduced. CS-DOX-NCs possess a J-type aggregation conformation of cyanine dye within the nanochannels and encapsulate doxorubicin through the π-π interaction with cyanine dye. Under near-infrared light irradiation, CS-DOX-NCs produce the enhanced photothermal conversion efficiency through the maximized nonradiative transition of J-type Cypate aggregates, trigger the light-driven drug release through the destabilization of temperature-sensitive π-π interaction, and generate the effective intracellular translocation of doxorubicin from the lysosomes to cytoplasma through reactive oxygen species-mediated lysosomal disruption, thereby causing the potent in vivo hyperthermia and intracellular trafficking of drug into cytoplasma at tumors. Moreover, CS-DOX-NCs possess good resistance to photobleaching and preferable tumor accumulation, facilitating severe photoinduced cell damage, and subsequent synergy between photothermal and chemotherapeutic therapy with tumor ablation. These findings provide new insights of light-driven nanoparticles for synergistic cancer therapy.


Assuntos
Doxorrubicina/uso terapêutico , Hipertermia Induzida , Indóis/química , Luz , Nanopartículas/química , Propionatos/química , Dióxido de Silício/química , Animais , Antineoplásicos/farmacologia , Antineoplásicos/uso terapêutico , Linhagem Celular Tumoral , Doxorrubicina/farmacologia , Liberação Controlada de Fármacos , Endocitose/efeitos dos fármacos , Camundongos , Nanopartículas/ultraestrutura , Oxigênio Singlete/metabolismo , Distribuição Tecidual/efeitos dos fármacos , Carga Tumoral/efeitos dos fármacos
12.
Adv Mater ; 28(46): 10155-10164, 2016 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-27714878

RESUMO

Bifunctional self-assembled nanoparticles with a platinated fluorophore core with ultra-low radiative transition are developed, which can generate both singlet oxygen and the photothermal effect for synergistic photodynamic and photothermal therapy with tumor ablation.


Assuntos
Nanopartículas Metálicas/química , Nanomedicina/métodos , Neoplasias/tratamento farmacológico , Neoplasias/patologia , Fotoquimioterapia , Platina/química , Animais , Linhagem Celular Tumoral , Hipertermia Induzida , Camundongos , Oxigênio Singlete/química
13.
ACS Nano ; 9(8): 7874-85, 2015 Aug 25.
Artigo em Inglês | MEDLINE | ID: mdl-26181349

RESUMO

Smart nanocarriers are of particular interest as nanoscale vehicles of imaging and therapeutic agents in the field of theranostics. Herein, we report dually pH/reduction-responsive terpolymeric vesicles with monodispersive size distribution, which are constructed by assembling acetal- and disulfide-functionalized star terpolymer with near-infrared cyanine dye and anticancer drug. The vesicular nanostructure exhibits multiple theranostic features including on-demand drug releases responding to pH/reduction stimuli, enhanced photothermal conversion efficiency of cyanine dye, and efficient drug translocation from lysosomes to cytoplasma, as well as preferable cellular uptakes and biodistribution. These multiple theranostic features result in ultrahigh-contrast fluorescence imaging and thermo-chemotherapy-synergized tumor ablation. The dually stimuli-responsive vesicles represent a versatile theranostic approach for enhanced cancer imaging and therapy.


Assuntos
Doxorrubicina/farmacologia , Portadores de Fármacos , Verde de Indocianina/farmacologia , Neoplasias Mamárias Animais/terapia , Nanoestruturas/uso terapêutico , Imagem Óptica/métodos , Nanomedicina Teranóstica/métodos , Resinas Acrílicas/química , Animais , Antineoplásicos/química , Antineoplásicos/farmacologia , Linhagem Celular Tumoral , Doxorrubicina/química , Liberação Controlada de Fármacos , Feminino , Corantes Fluorescentes/química , Corantes Fluorescentes/farmacologia , Concentração de Íons de Hidrogênio , Hipertermia Induzida/métodos , Verde de Indocianina/química , Neoplasias Mamárias Animais/diagnóstico , Neoplasias Mamárias Animais/patologia , Camundongos , Camundongos Nus , Nanoestruturas/química , Nanoestruturas/ultraestrutura , Oxirredução , Tamanho da Partícula , Processos Fotoquímicos , Poliésteres/química , Polietilenoglicóis/química , Oxigênio Singlete/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA