Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Biochem Pharmacol ; 199: 115005, 2022 05.
Artigo em Inglês | MEDLINE | ID: mdl-35318037

RESUMO

Aflatoxins B1 (AFB1) is a hepatoxic compound produced by Aspergillus flavus and Aspergillus parasiticus, seriously threatening food safety and the health of humans and animals. Understanding the metabolism of AFB1 is important for developing detoxification and intervention strategies. In this review, we summarize the AFB1 metabolic fates in humans and animals and the key enzymes that metabolize AFB1, including cytochrome P450s (CYP450s) for AFB1 bioactivation, glutathione-S-transferases (GSTs) and aflatoxin-aldehyde reductases (AFARs) in detoxification. Furthermore, AFB1 metabolism in microbes is also summarized. Microorganisms specifically and efficiently transform AFB1 into less or non-toxic products in an environmental-friendly approach which could be the most desirable detoxification strategy in the future. This review provides a wholistic insight into the metabolism and biotransformation of AFB1 in various organisms, which also benefits the development of protective strategies in humans and animals.


Assuntos
Aflatoxina B1 , Aspergillus flavus , Aflatoxina B1/metabolismo , Animais , Aspergillus flavus/metabolismo , Biotransformação , Sistema Enzimático do Citocromo P-450/metabolismo
2.
mLife ; 1(2): 183-197, 2022 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-37731585

RESUMO

Gut microbiota composition is suggested to associate with coronavirus disease 2019 (COVID-19) severity, but the impact of gut microbiota on health outcomes is largely unclear. We recruited 81 individuals from Wuhan, China, including 13 asymptomatic infection cases (Group A), 24 COVID-19 convalescents with adverse outcomes (Group C), 31 severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) re-positive cases (Group D), and 13 non-COVID-19 healthy controls (Group H). The microbial features of Groups A and D were similar and exhibited higher gut microbial diversity and more abundant short-chain fatty acid (SCFA)-producing species than Group C. Group C was enriched with opportunistic pathogens and virulence factors related to adhesion and toxin production. The abundance of SCFA-producing species was negatively correlated, while Escherichia coli was positively correlated with adverse outcomes. All three groups (A, C, and D) were enriched with the mucus-degrading species Akkermansia muciniphila, but decreased with Bacteroides-encoded carbohydrate-active enzymes. The pathways of vitamin B6 metabolic and folate biosynthesis were decreased, while selenocompound metabolism was increased in the three groups. Specifically, the secondary bile acid (BA) metabolic pathway was enriched in Group A. Antibiotic resistance genes were common among the three groups. Conclusively, the gut microbiota was related to the health outcomes of COVID-19. Dietary supplementations (SCFAs, BA, selenium, folate, vitamin B6) may be beneficial to COVID-19 patients.

3.
Int J Mol Sci ; 22(17)2021 Aug 24.
Artigo em Inglês | MEDLINE | ID: mdl-34502057

RESUMO

Cereulide is one of the main food-borne toxins for vomiting synthesized by Bacillus cereus, and it widely contaminates meat, eggs, milk, and starchy foods. However, the toxicological effects and mechanisms of the long-time exposure of cereulide in vivo remain unknown. In this study, oral administration of 50 and 200 µg/kg body weight cereulide in the mice for 28 days caused oxidative stress in liver and kidney tissues and induce abnormal expression of inflammatory factors. In pathogenesis, cereulide exposure activated endoplasmic reticulum stress (ER stress) via the pathways of inositol-requiring enzyme 1α (IRE1α)/Xbox binding protein (XBP1) and PRKR-like ER kinase (PERK)/eukaryotic translation initiation factor 2α (eIF2α), and consequently led to the apoptosis and tissue damages in mouse liver and kidney. In vitro, we confirmed that the accumulation of reactive oxygen species (ROS) caused by cereulide is the main factor leading to ER stress in HepaRG and HEK293T cells. Supplementation of sodium butyrate (NaB) inhibited the activations of IRE1α/XBP1 and PERK/eIF2α pathways caused by cereulide exposure in mice, and reduced the cell apoptosis in liver and kidney. In conclusion, this study provides a new insight in understanding the toxicological mechanism and prevention of cereulide exposure.


Assuntos
Toxinas Bacterianas/toxicidade , Depsipeptídeos/toxicidade , Rim/efeitos dos fármacos , Fígado/efeitos dos fármacos , Animais , Apoptose , Linhagem Celular Tumoral , Estresse do Retículo Endoplasmático , Células HEK293 , Humanos , Rim/metabolismo , Fígado/metabolismo , Masculino , Proteínas de Membrana/metabolismo , Camundongos , Camundongos Endogâmicos BALB C , Proteínas Serina-Treonina Quinases/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Proteína 1 de Ligação a X-Box/metabolismo , eIF-2 Quinase/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA