Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Front Bioeng Biotechnol ; 11: 1179332, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37346792

RESUMO

Tissue Engineering of cartilage has been hampered by the inability of engineered tissue to express native levels of type II collagen in vitro. Inadequate levels of type II collagen are, in part, due to a failure to recapitulate the physiological environment in culture. In this study, we engineered primary rabbit chondrocytes to express a secreted reporter, Gaussia Luciferase, driven by the type II collagen promoter, and applied a Design of Experiments approach to assess chondrogenic differentiation in micronutrient-supplemented medium. Using a Response Surface Model, 240 combinations of micronutrients absent in standard chondrogenic differentiation medium, were screened and assessed for type II collagen promoter-driven Gaussia luciferase expression. While the target of this study was to establish a combination of all micronutrients, alpha-linolenic acid, copper, cobalt, chromium, manganese, molybdenum, vitamins A, E, D and B7 were all found to have a significant effect on type II collagen promoter activity. Five conditions containing all micronutrients predicted to produce the greatest luciferase expression were selected for further study. Validation of these conditions in 3D aggregates identified an optimal condition for type II collagen promoter activity. Engineered cartilage grown in this condition, showed a 170% increase in type II collagen expression (Day 22 Luminescence) and in Young's tensile modulus compared to engineered cartilage in basal media alone.Collagen cross-linking analysis confirmed formation of type II-type II collagen and type II-type IX collagen cross-linked heteropolymeric fibrils, characteristic of mature native cartilage. Combining a Design of Experiments approach and secreted reporter cells in 3D aggregate culture enabled a high-throughput platform that can be used to identify more optimal physiological culture parameters for chondrogenesis.

2.
Front Cell Dev Biol ; 8: 92, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32161755

RESUMO

Tissue engineered hyaline cartilage is plagued by poor mechanical properties largely due to inadequate type II collagen expression. Of note, commonly used defined chondrogenic media lack 14 vitamins and minerals, some of which are implicated in chondrogenesis. Type II collagen promoter-driven Gaussia luciferase was transfected into ATDC5 cells to create a chondrogenic cell with a secreted-reporter. The reporter cells were used in an aggregate-based chondrogenic culture model to develop a high-throughput analytic platform. This high-throughput platform was used to assess the effect of vitamins and minerals, alone and in combination with TGFß1, on COL2A1 promoter-driven expression. Significant combinatorial effects between vitamins, minerals, and TGFß1 in terms of COL2A1 promoter-driven expression and metabolism were discovered. An "optimal" continual supplement of copper and vitamin K in the presence of TGFß1 gave a 2.5-fold increase in COL2A1 promoter-driven expression over TGFß1 supplemented media alone in ATDC5 cells.

3.
PLoS One ; 7(3): e33225, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-22457746

RESUMO

Controlled differentiation of human embryonic stem cells (hESCs) and induced pluripotent stem cells (iPSCs) into cells that resemble adult mesenchymal stem cells (MSCs) is an attractive approach to obtain a readily available source of progenitor cells for tissue engineering. The present study reports a new method to rapidly derive MSC-like cells from hESCs and hiPSCs, in one step, based on culturing the cells on thin, fibrillar, type I collagen coatings that mimic the structure of physiological collagen. Human H9 ESCs and HDFa-YK26 iPSCs were singly dissociated in the presence of ROCK inhibitor Y-27632, plated onto fibrillar collagen coated plates and cultured in alpha minimum essential medium (alpha-MEM) supplemented with 10% fetal bovine serum, 50 uM magnesium L-ascorbic acid phosphate and 100 nM dexamethasone. While fewer cells attached on the collagen surface initially than standard tissue culture plastic, after culturing for 10 days, resilient colonies of homogenous spindle-shaped cells were obtained. Flow cytometric analysis showed that a high percentage of the derived cells expressed typical MSC surface markers including CD73, CD90, CD105, CD146 and CD166 and were negative as expected for hematopoietic markers CD34 and CD45. The MSC-like cells derived from pluripotent cells were successfully differentiated in vitro into three different lineages: osteogenic, chondrogenic, and adipogenic. Both H9 hES and YK26 iPS cells displayed similar morphological changes during the derivation process and yielded MSC-like cells with similar properties. In conclusion, this study demonstrates that bioimimetic, fibrillar, type I collagen coatings applied to cell culture plates can be used to guide a rapid, efficient derivation of MSC-like cells from both human ES and iPS cells.


Assuntos
Colágeno , Células-Tronco Mesenquimais/citologia , Células-Tronco Pluripotentes/citologia , Tecido Adiposo/citologia , Antígenos CD/análise , Osso e Ossos/citologia , Cartilagem/citologia , Diferenciação Celular , Citometria de Fluxo , Humanos , Imunofenotipagem , Células-Tronco Mesenquimais/imunologia , Células-Tronco Pluripotentes/imunologia
4.
Blood ; 116(22): 4456-63, 2010 Nov 25.
Artigo em Inglês | MEDLINE | ID: mdl-20709903

RESUMO

Previous studies using blocking antibodies suggested that bone marrow (BM)-derived C3 is required for efficient osteoclast (OC) differentiation, and that C3 receptors are involved in this process. However, the detailed underlying mechanism and the possible involvement of other complement receptors remain unclear. In this report, we found that C3(-/-) BM cells exhibited lower RANKL/OPG expression ratios, produced smaller amounts of macrophage colony-stimulating factor and interleukin-6 (IL-6), and generated significantly fewer OCs than wild-type (WT) BM cells. During differentiation, in addition to C3, WT BM cells locally produced all other complement components required to activate C3 and to generate C3a/C5a through the alter-native pathway, which is required for efficient OC differentiation. Abrogating C3aR/C5aR activity either genetically or pharmaceutically suppressed OC generation, while stimulating WT or C3(-/-) BM cells with exogenous C3a and/or C5a augmented OC differentiation. Furthermore, supplementation with IL-6 rescued OC generation from C3(-/-) BM cells, and neutralizing antibodies to IL-6 abolished the stimulatory effects of C3a/C5a on OC differentiation. These data indicate that during OC differentiation, BM cells locally produce components, which are activated through the alternative pathway to regulate OC differentiation. In addition to C3 receptors, C3aR/C5aR also regulate OC differentiation, at least in part, by modulating local IL-6 production.


Assuntos
Células da Medula Óssea/citologia , Diferenciação Celular , Ativação do Complemento , Complemento C3/imunologia , Osteoclastos/citologia , Animais , Células da Medula Óssea/imunologia , Calcitriol/imunologia , Células Cultivadas , Complemento C3/genética , Complemento C5/imunologia , Fator B do Complemento/imunologia , Fator D do Complemento/imunologia , Deleção de Genes , Regulação da Expressão Gênica , Humanos , Interleucina-6/imunologia , Fator Estimulador de Colônias de Macrófagos/imunologia , Camundongos , Camundongos Endogâmicos C57BL , Osteoclastos/imunologia , Ligante RANK/genética , Receptores de Complemento/imunologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA