Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 14 de 14
Filtrar
1.
Plant Physiol Biochem ; 208: 108459, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38484684

RESUMO

The essentiality of silicon (Si) has always been a matter of debate as it is not considered crucial for the lifecycles of most plants. But beneficial effects of endogenous Si and its supplementation have been observed in many plants. Silicon plays a pivotal role in alleviating the biotic and abiotic stress in plants by acting as a physical barrier as well as affecting molecular pathways involved in stress tolerance, thus widely considered as "quasi-essential". In soil, most of Si is found in complex forms as mineral silicates which is not available for plant uptake. Monosilicic acid [Si(OH)4] is the only plant-available form of silicon (PAS) present in the soil. The ability of a plant to uptake Si is positively correlated with the PAS concentration of the soil. Since many cultivated soils often lack a sufficient amount of PAS, it has become common practice to supplement Si through the use of Si-based fertilizers in various crop cultivation systems. This review outlines the use of natural and chemical sources of Si as fertilizer, different regimes of Si fertilization, and conclude by identifying the optimum concentration of Si required to observe the beneficial effects in plants. Also, the different mathematical models defining the mineral dynamics for Si uptake at whole plant scale considering various natural factors like plant morphology, mineral distribution, and transporter expression have been discussed. Information provided here will further help in increasing understanding of Si role and thereby facilitate efficient exploration of the element as a fertilizer in crop production.


Assuntos
Fertilizantes , Silício , Silício/farmacologia , Solo/química , Transporte Biológico , Plantas/metabolismo , Minerais/metabolismo
2.
Chemosphere ; 305: 135165, 2022 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-35667508

RESUMO

Although, silicon - the second most abundant element in the earth crust could not supersede carbon (C) in the competition of being the building block of life during evolution, yet its presence has been reported in some life forms. In case of the plants, silicon has been reported widely to promote the plant growth under normal as well as stressful situations. Nanoform of silicon is now being explored for its potential to improve plant productivity and its tolerance against various stresses. Silicon nanoparticles (SiNPs) in the form of nanofertilizers, nanoherbicides, nanopesticides, nanosensors and targeted delivery systems, find great utilization in the field of agriculture. However, the mechanisms underlying their uptake by plants need to be deciphered in detail. Silicon nanoformss are reported to enhance plant growth, majorly by improving photosynthesis rate, elevating nutrient uptake and mitigating reactive oxygen species (ROS)-induced oxidative stress. Various studies have reported their ability to provide tolerance against a range of stresses by upregulating plant defense responses. Moreover, they are proclaimed not to have any detrimental impacts on environment yet. This review includes the up-to-date information in context of the eminent role of silicon nanoforms in crop improvement and stress management, supplemented with suggestions for future research in this field.


Assuntos
Desenvolvimento Vegetal , Silício , Agricultura , Estresse Oxidativo , Plantas , Silício/farmacologia , Estresse Fisiológico
3.
Cells ; 12(1)2022 12 26.
Artigo em Inglês | MEDLINE | ID: mdl-36611890

RESUMO

Soybean with enriched nutrients has emerged as a prominent source of edible oil and protein. In the present study, a meta-analysis was performed by integrating quantitative trait loci (QTLs) information, region-specific association and transcriptomic analysis. Analysis of about a thousand QTLs previously identified in soybean helped to pinpoint 14 meta-QTLs for oil and 16 meta-QTLs for protein content. Similarly, region-specific association analysis using whole genome re-sequenced data was performed for the most promising meta-QTL on chromosomes 6 and 20. Only 94 out of 468 genes related to fatty acid and protein metabolic pathways identified within the meta-QTL region were found to be expressed in seeds. Allele mining and haplotyping of these selected genes were performed using whole genome resequencing data. Interestingly, a significant haplotypic association of some genes with oil and protein content was observed, for instance, in the case of FAD2-1B gene, an average seed oil content of 20.22% for haplotype 1 compared to 15.52% for haplotype 5 was observed. In addition, the mutation S86F in the FAD2-1B gene produces a destabilizing effect of (ΔΔG Stability) -0.31 kcal/mol. Transcriptomic analysis revealed the tissue-specific expression of candidate genes. Based on their higher expression in seed developmental stages, genes such as sugar transporter, fatty acid desaturase (FAD), lipid transporter, major facilitator protein and amino acid transporter can be targeted for functional validation. The approach and information generated in the present study will be helpful in the map-based cloning of regulatory genes, as well as for marker-assisted breeding in soybean.


Assuntos
Glycine max , Locos de Características Quantitativas , Glycine max/química , Locos de Características Quantitativas/genética , Mapeamento Cromossômico , Transcriptoma/genética , Melhoramento Vegetal , Sementes/metabolismo , Óleos de Plantas/metabolismo , Genômica
4.
Environ Pollut ; 294: 118606, 2022 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-34863894

RESUMO

Understanding of aquaporins (AQPs) facilitating the transport of water and many other small solutes including metalloids like silicon (Si) and arsenic (As) is important to develop stress tolerant cultivars. In the present study, 40 AQPs were identified in the genome of pigeonpea (Cajanus cajan), a pulse crop widely grown in semi-arid region and areas known to affected with heavy metals like As. Conserved domains, variation at NPA motifs, aromatic/arginine (ar/R) selectivity filters, and pore morphology defined here will be crucial in predicting solute specificity of pigeonpea AQPs. The study identified CcNIP2-1 as an AQP predicted to transporter Si (beneficial element) as well as As (hazardous element). Further Si quantification in different tissues showed about 1.66% Si in leaves which confirmed the predictions. Furthermore, scanning electron microscopy showed a higher level of Si accumulation in trichomes on the leaf surface. A significant alleviation in level of As, Sb and Ge stress was also observed when these heavy metals were supplemented with Si. Estimation of relative water content, H2O2, lipid peroxidation, proline, total chlorophyll content and other physiological parameters suggested Si derived stress tolerance. Extensive transcriptome profiling under different developmental stages from germination to senescence was performed to understand the tissue-specific regulation of different AQPs. For instance, high expression of TIP3s was observed only in reproductive tissues. Co-expression network developed using transcriptome data from 30 different conditions and tissues, showed interdependency of AQPs. Expression profiling of pigeonpea performed using real time PCR showed differential expression of AQPs after Si supplementation. The information generated about the phylogeny, distribution, molecular evolution, solute specificity, and gene expression dynamics in article will be helpful to better understand the AQP transport system in pigeonpea and other legumes.


Assuntos
Aquaporinas , Arsênio , Cajanus , Germânio , Antimônio , Aquaporinas/genética , Cajanus/genética , Peróxido de Hidrogênio , Silício
5.
Plant Soil ; 466(1-2): 1-20, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34720209

RESUMO

BACKGROUND: Silicon (Si) is widely considered a non-essential but beneficial element for higher plants, providing broad protection against various environmental stresses (both biotic and abiotic), particularly in species that can readily absorb the element. Two plasma-membrane proteins are known to coordinate the radial transport of Si (in the form of Si(OH)4) from soil to xylem within roots: the influx channel Lsi1 and the efflux transporter Lsi2. From a structural and mechanistic perspective, much more is known about Lsi1 (a member of the NIP-III subgroup of the Major Intrinsic Proteins) compared to Lsi2 (a putative Si(OH)4/H+ antiporter, with some homology to bacterial anion transporters). SCOPE: Here, we critically review the current state of understanding regarding the physiological role and molecular characteristics of Lsi2. We demonstrate that the structure-function relationship of Lsi2 is largely uncharted and that the standing transport model requires much better supportive evidence. We also provide (to our knowledge) the most current and extensive phylogenetic analysis of Lsi2 from all fully sequenced higher-plant genomes. We end by suggesting research directions and hypotheses to elucidate the properties of Lsi2. CONCLUSIONS: Given that Lsi2 is proposed to mediate xylem Si loading and thus root-to-shoot translocation and biosilicification, it is imperative that the field of Si transport focus its efforts on a better understanding of this important topic. With this review, we aim to stimulate and advance research in the field of Si transport and thus better exploit Si to improve crop resilience and agricultural output. SUPPLEMENTARY INFORMATION: The online version contains supplementary material available at 10.1007/s11104-021-05061-1.

6.
Plant Physiol Biochem ; 162: 677-689, 2021 May.
Artigo em Inglês | MEDLINE | ID: mdl-33780741

RESUMO

Over the last decade, silicon (Si) has been widely accepted as a beneficial element for plant growth. The advantages plant derives from the Si are primarily based on the uptake and transport mechanisms. In the present study, the Si uptake regime was studied in finger millet (Eleusine coracana (L). Gaertn.) under controlled and stress conditions. The finger millet can efficiently uptake Si and accumulate it by more than 1% of dry weight in the leaf tissues, thus categorized as a Si accumulator. Subsequent evaluation with the single root assay revealed a three-fold higher Si uptake under osmatic stress than control. These results suggest that Si alleviated the PEG-induced stress by regulating the levels of osmolytes and antioxidant enzymes. Further, to understand the molecular mechanism involved in Si uptake, the Si influx (EcoLsi1 and EcoLsi6) and efflux transporters (EcoLsi2 and EcoLsi3) were identified and characterized. The comparative phylogenomic analysis of the influx transporter EcoLsi1 with other monocots revealed conserved features like aromatic/arginine (Ar/R) selectivity filters and pore morphology. Similarly, Si efflux transporter EcoLsi3 is highly homologous to other annotated efflux transporters. The transcriptome data revealed that the expression of both influx and efflux Si transporters was elevated due to Si supplementation under stress conditions. These findings suggest that stress elevates Si uptake in finger millet, and its transport is also regulated by the Si transporters. The present study will be helpful to better explore Si derived benefits in finger millet.


Assuntos
Eleusine , Pressão Osmótica , Filogenia , Silício , Transcriptoma
7.
Plant Physiol Biochem ; 162: 110-123, 2021 May.
Artigo em Inglês | MEDLINE | ID: mdl-33667964

RESUMO

Salt stress limits plant growth and productivity by severely impacting the fundamental physiological processes. Silicon (Si) supplementation is considered one of the promising methods to improve plant resilience under salt stress. Here, the role of Si in modulating physiological and biochemical processes that get adversely affected by high salinity, is discussed. Although numerous reports show the beneficial effects of Si under stress, the precise molecular mechanism underlying this is not well understood. Questions like whether all plants are equally benefitted with Si supplementation despite having varying Si uptake capability and salinity tolerance are still elusive. This review illustrates the Si uptake and accumulation mechanism to understand the direct or indirect participation of Si in different physiological processes. Evaluation of plant responses at transcriptomics and proteomics levels are promising in understanding the role of Si. Integration of physiological understanding with omics scale information highlighted Si supplementation affecting the phytohormonal and antioxidant responses under salinity as a key factor defining improved resilience. Similarly, the crosstalk of Si with lignin and phenolic content under salt stress also seems to be an important phenomenon helping plants to reduce the stress. The present review also addressed various crucial mechanisms by which Si application alleviates salt stress, such as a decrease in oxidative damage, decreased lipid peroxidation, improved photosynthetic ability, and ion homeostasis. Besides, the application and challenges of using Si-nanoparticles have also been addressed. Comprehensive information and discussion provided here will be helpful to better understand the role of Si under salt stress.


Assuntos
Estresse Salino , Silício , Antioxidantes , Salinidade , Tolerância ao Sal , Silício/farmacologia
8.
Plant Cell Physiol ; 62(10): 1509-1527, 2021 Dec 03.
Artigo em Inglês | MEDLINE | ID: mdl-33594421

RESUMO

Histochemistry is an essential analytical tool interfacing extensively with plant science. The literature is indeed constellated with examples showing its use to decipher specific physiological and developmental processes, as well as to study plant cell structures. Plant cell structures are translucent unless they are stained. Histochemistry allows the identification and localization, at the cellular level, of biomolecules and organelles in different types of cells and tissues, based on the use of specific staining reactions and imaging. Histochemical techniques are also widely used for the in vivo localization of promoters in specific tissues, as well as to identify specific cell wall components such as lignin and polysaccharides. Histochemistry also enables the study of plant reactions to environmental constraints, e.g. the production of reactive oxygen species (ROS) can be traced by applying histochemical staining techniques. The possibility of detecting ROS and localizing them at the cellular level is vital in establishing the mechanisms involved in the sensitivity and tolerance to different stress conditions in plants. This review comprehensively highlights the additional value of histochemistry as a complementary technique to high-throughput approaches for the study of the plant response to environmental constraints. Moreover, here we have provided an extensive survey of the available plant histochemical staining methods used for the localization of metals, minerals, secondary metabolites, cell wall components, and the detection of ROS production in plant cells. The use of recent technological advances like CRISPR/Cas9-based genome-editing for histological application is also addressed. This review also surveys the available literature data on histochemical techniques used to study the response of plants to abiotic stresses and to identify the effects at the tissue and cell levels.


Assuntos
Botânica/métodos , Ensaios de Triagem em Larga Escala , Biologia Molecular/métodos , Fenômenos Fisiológicos Vegetais , Estresse Fisiológico , Meio Ambiente
9.
J Hazard Mater ; 409: 124598, 2021 05 05.
Artigo em Inglês | MEDLINE | ID: mdl-33234398

RESUMO

Aquaporins (AQPs) facilitates the transport of small solutes like water, urea, carbon dioxide, boron, and silicon (Si) and plays a critical role in important physiological processes. In this study, genome-wide characterization of AQPs was performed in bottle gourd. A total of 36 AQPs were identified in the bottle gourd, which were subsequently analyzed to understand the pore-morphology, exon-intron structure, subcellular-localization. In addition, available transcriptome data was used to study the tissue-specific expression. Several AQPs showed tissue-specific expression, more notably the LsiTIP3-1 having a high level of expression in flowers and fruits. Based on the in-silico prediction of solute specificity, LsiNIP2-1 was predicted to be a Si transporter. Silicon was quantified in different tissues, including root, young leaves, mature leaves, tendrils, and fruits of bottle gourd plants. More than 1.3% Si (d.w.) was observed in bottle gourd leaves, testified the in-silico predictions. Silicon deposition evaluated with an energy-dispersive X-ray coupled with a scanning electron microscope showed a high Si accumulation in the shaft of leaf trichomes. Similarly, co-localization of Si with arsenic and antimony was observed. Expression profiling performed with real-time quantitative PCR showed differential expression of AQPs in response to Si supplementation. The information provided in the present study will be helpful to better understand the AQP transport mechanism, particularly Si and other metalloids transport and localization in plants.


Assuntos
Aquaporinas , Metaloides , Aquaporinas/genética , Aquaporinas/metabolismo , Transporte Biológico , Plantas/metabolismo , Silício
10.
J Biotechnol ; 324: 103-111, 2020 Dec 20.
Artigo em Inglês | MEDLINE | ID: mdl-33007348

RESUMO

Jujube (Ziziphus jujubaMill.), a deciduous tree, is well known for its medicinal and nutritional values. Being an extremophile, it has an excellent capability to survive under arid conditions with limited water availability. In this regard, studying the role of water transport regulating proteins such as Aquaporins (AQPs) in jujube is of great importance. Aquaporins, channel-forming proteins are known to have a significant role in the transport of water and many other small solutes in plants. In the present study, computational approaches have identified 36 AQPs, which comprised of 12 NIPs (Nodulin 26-like intrinsic proteins), 10 PIPs (Plasma membrane intrinsic proteins), 10 TIPs (Tonoplast intrinsic proteins), 3 SIPs (Small intrinsic proteins), and 1 XIP (uncharacterized intrinsic protein). Conserved features of AQPs like asparagines-proline-alanine (NPA) amino acid motifs, aromatic/arginine (ar/R) selectivity filters, and Frogger's residues, having a significant role in solute specificity and transport, were also predicted. Homology-based tertiary (3D) structures of AQPS were also resolved using various tools, and subsequently, pore-lining residues have been identified using the 3D structures. The information of pore morphology, along with the conserved features provided through this work, will be helpful to predict solute specificity of AQPs. Analysis of transcriptomic data revealed the tissue-specific or ubiquitous expression of several AQPs in different tissues of jujube. Interestingly, TIP3-1 was found to have fruit specific expression whereas most of the AQPs have a relatively low expression. Based on the present study and previous reports, TIP3s seems to have a significant role in seed desiccation processes. The findings presented here provide pivotal insights into the functions of extremophile specific AQPs, to better understand the role of AQPs and, subsequently, the stress tolerance mechanism in jujube.


Assuntos
Aquaporinas , Plantas Medicinais , Ziziphus , Aquaporinas/genética , Frutas/metabolismo , Filogenia , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Vacúolos/metabolismo , Ziziphus/metabolismo
11.
J Exp Bot ; 71(21): 6703-6718, 2020 12 02.
Artigo em Inglês | MEDLINE | ID: mdl-32592476

RESUMO

Numerous studies have shown the beneficial effects of silicon (Si) for plant growth, particularly under stress conditions, and hence a detailed understanding of the mechanisms of its uptake, subsequent transport, and accumulation in different tissues is important. Here, we provide a thorough review of our current knowledge of how plants benefit from Si supplementation. The molecular mechanisms involved in Si transport are discussed and we highlight gaps in our knowledge, particularly with regards to xylem unloading and transport into heavily silicified cells. Silicification of tissues such as sclerenchyma, fibers, storage tissues, the epidermis, and vascular tissues are described. Silicon deposition in different cell types, tissues, and intercellular spaces that affect morphological and physiological properties associated with enhanced plant resilience under various biotic and abiotic stresses are addressed in detail. Most Si-derived benefits are the result of interference in physiological processes, modulation of stress responses, and biochemical interactions. A better understanding of the versatile roles of Si in plants requires more detailed knowledge of the specific mechanisms involved in its deposition in different tissues, at different developmental stages, and under different environmental conditions.


Assuntos
Plantas , Silício , Transporte Biológico , Desenvolvimento Vegetal , Estresse Fisiológico
12.
Plants (Basel) ; 8(3)2019 Mar 21.
Artigo em Inglês | MEDLINE | ID: mdl-30901942

RESUMO

Over the past few decades, heavy metal contamination in soil and water has increased due to anthropogenic activities. The higher exposure of crop plants to heavy metal stress reduces growth and yield, and affect the sustainability of agricultural production. In this regard, the use of silicon (Si) supplementation offers a promising prospect since numerous studies have reported the beneficial role of Si in mitigating stresses imposed by biotic as well as abiotic factors including heavy metal stress. The fundamental mechanisms involved in the Si-mediated heavy metal stress tolerance include reduction of metal ions in soil substrate, co-precipitation of toxic metals, metal-transport related gene regulation, chelation, stimulation of antioxidants, compartmentation of metal ions, and structural alterations in plants. Exogenous application of Si has been well documented to increase heavy metal tolerance in numerous plant species. The beneficial effects of Si are particularly evident in plants able to accumulate high levels of Si. Consequently, to enhance metal tolerance in plants, the inherent genetic potential for Si uptake should be improved. In the present review, we have discussed the potential role and mechanisms involved in the Si-mediated alleviation of metal toxicity as well as different approaches for enhancing Si-derived benefits in crop plants.

13.
Plant Biotechnol J ; 16(11): 1939-1953, 2018 11.
Artigo em Inglês | MEDLINE | ID: mdl-29618164

RESUMO

The cultivated [Glycine max (L) Merr.] and wild [Glycine soja Siebold & Zucc.] soybean species comprise wide variation in seed composition traits. Compared to wild soybean, cultivated soybean contains low protein, high oil, and high sucrose. In this study, an interspecific population was derived from a cross between G. max (Williams 82) and G. soja (PI 483460B). This recombinant inbred line (RIL) population of 188 lines was sequenced at 0.3× depth. Based on 91 342 single nucleotide polymorphisms (SNPs), recombination events in RILs were defined, and a high-resolution bin map was developed (4070 bins). In addition to bin mapping, quantitative trait loci (QTL) analysis for protein, oil, and sucrose was performed using 3343 polymorphic SNPs (3K-SNP), derived from Illumina Infinium BeadChip sequencing platform. The QTL regions from both platforms were compared, and a significant concordance was observed between bin and 3K-SNP markers. Importantly, the bin map derived from next-generation sequencing technology enhanced mapping resolution (from 1325 to 50 Kb). A total of five, nine, and four QTLs were identified for protein, oil, and sucrose content, respectively, and some of the QTLs coincided with soybean domestication-related genomic loci. The major QTL for protein and oil were mapped on Chr. 20 (qPro_20) and suggested negative correlation between oil and protein. In terms of sucrose content, a novel and major QTL were identified on Chr. 8 (qSuc_08) and harbours putative genes involved in sugar transport. In addition, genome-wide association using 91 342 SNPs confirmed the genomic loci derived from QTL mapping. A QTL-based haplotype using whole-genome resequencing of 106 diverse soybean lines identified unique allelic variation in wild soybean that could be utilized to widen the genetic base in cultivated soybean.


Assuntos
Mapeamento Cromossômico , Genoma de Planta/genética , Glycine max/genética , Proteínas de Plantas/metabolismo , Sementes/metabolismo , Óleo de Soja/metabolismo , Sacarose/metabolismo , Mapeamento Cromossômico/métodos , Polimorfismo de Nucleotídeo Único/genética , Locos de Características Quantitativas , Análise de Sequência de DNA , Glycine max/metabolismo
14.
J Plant Physiol ; 200: 82-9, 2016 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-27344403

RESUMO

Silicon (Si) is a beneficial element to plants, and its absorption via transporters leads to protective effects against biotic and abiotic stresses. In higher plants, two groups of root transporters for Si have been identified: influx transporters (Lsi1) and efflux transporters (Lsi2). Lsi1 transporters belong to the NIPIII aquaporins, and functional Lsi1s have been found in many plants species. Much less is known about Lsi2s that have been characterized in only a few species. Horsetail (Equisetum arvense), known among the highest Si accumulators in the plant kingdom, is a valuable model to study Si absorption and deposition. In this study, we first analyzed discrete Si deposition patterns in horsetail shoots, where ubiquitous silicification differs markedly from that of higher plants. Then, using the sequenced horsetail root transcriptome, two putative Si efflux transporter genes, EaLsi2-1 and EaLsi2-2, were identified. These genes share low sequence similarity with their homologues in higher plants. Further characterisation of EaLsi2-1 in transient expression assay using Nicotiana benthamiana epidermal cells confirmed transmembrane localization. In order to determine their functionality, the EaLsi2-1 was expressed in Xenopus oocytes, confirming that the translated protein was efficient for Si efflux. Both genes were equally expressed in roots and shoots, but interestingly, showed a much higher expression in the shoots than in the roots in contrast to Lsi2s found in other plants, a result consistent with the specific anatomy of horsetail and its rank as one of the highest Si accumulators among plant species.


Assuntos
Equisetum/metabolismo , Proteínas de Membrana Transportadoras/metabolismo , Proteínas de Plantas/metabolismo , Silício/metabolismo , Animais , Transporte Biológico , Membrana Celular/metabolismo , Clonagem Molecular , DNA Complementar/genética , Equisetum/genética , Genes de Plantas , Proteínas de Membrana Transportadoras/genética , Oócitos/metabolismo , Filogenia , Proteínas de Plantas/química , Proteínas de Plantas/genética , Brotos de Planta/metabolismo , Alinhamento de Sequência , Xenopus
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA