Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Mais filtros

Medicinas Complementares
Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Environ Sci Pollut Res Int ; 29(2): 1746-1762, 2022 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-34709552

RESUMO

The beet army worm, Spodoptera exigua, is a widely distributed polyphagous pest of economically important crops worldwide. The management of this pest insect continues to face many challenges. Despite synthetic chemicals posing a serious threat to the environment, these remain the conventional approach for controlling S. exigua in the field. An over-reliance on chemical control has not only led to selection for resistance to insecticides and to a reduction of natural enemies, but has also polluted various components of ecosystem. Given these increasing pressures on the ecosystem, there is a need to implement integrated pest management (IPM) approaches exploiting a wider range of tools (biotechnological approaches, microbial control, biological control, cultural control, and use of host plant resistance) for an alternative to chemical control. The IPM approach can not only reduce the hazard of chemical residues in the environment and associated health problems, but may also provide best strategies to control insect pests. This review synthesizes published information on insecticide resistance of S. exigua and explores alternative IPM approaches to control S. exigua.


Assuntos
Beta vulgaris , Inseticidas , Animais , Ecossistema , Resistência a Inseticidas , Inseticidas/farmacologia , Larva , Spodoptera
2.
Pest Manag Sci ; 73(3): 515-520, 2017 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-27860184

RESUMO

BACKGROUND: The flower bug Orius sauteri (Poppius) (Hemiptera: Anthocoridae) is widely used as a biocontrol agent against thrips and aphids infesting greenhouse vegetables in Asia. The survival and oviposition of such predators, as well as the biocontrol services they provide, may be enhanced by adding extra floral resources to the crops. In the present study we investigated the effects of the plant Calendula officinalis L., used as a floral resource, for promoting the control of Myzus persicae (Sulzer) and Frankliniella occidentalis (Pergande) by O. sauteri under laboratory and greenhouse conditions. RESULTS: Results showed that the presence of C. officinalis enhanced aphid and thrips suppression via an increased O. sauteri population growth. The predator populations responded positively to the addition of C. officinalis in the system, and they also varied as a function of the temperatures tested under laboratory conditions. In a similar way, predator populations varied among seasons, with the highest densities recorded in May in the greenhouse. CONCLUSION: C. officinalis can be used to increase available resources for natural enemies used in agricultural crops, notably in greenhouses. This study also provides evidence that increasing floral resources can enhance pest suppression provided by O. sauteri. © 2016 Society of Chemical Industry.


Assuntos
Afídeos/fisiologia , Calendula/crescimento & desenvolvimento , Heterópteros/fisiologia , Controle Biológico de Vetores/métodos , Comportamento Predatório , Tisanópteros/fisiologia , Animais , Cadeia Alimentar , Crescimento Demográfico
3.
Parasitol Res ; 115(3): 997-1013, 2016 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-26612497

RESUMO

Malaria remains a major public health problem due to the emergence and spread of Plasmodium falciparum strains resistant to chloroquine. There is an urgent need to investigate new and effective sources of antimalarial drugs. This research proposed a novel method of fern-mediated synthesis of silver nanoparticles (AgNP) using a cheap plant extract of Pteridium aquilinum, acting as a reducing and capping agent. AgNP were characterized by UV-vis spectrophotometry, Fourier transform infrared (FTIR) spectroscopy, energy-dispersive X-ray spectroscopy (EDX), and X-ray diffraction (XRD). Phytochemical analysis of P. aquilinum leaf extract revealed the presence of phenols, alkaloids, tannins, flavonoids, proteins, carbohydrates, saponins, glycosides, steroids, and triterpenoids. LC/MS analysis identified at least 19 compounds, namely pterosin, hydroquinone, hydroxy-acetophenone, hydroxy-cinnamic acid, 5, 7-dihydroxy-4-methyl coumarin, trans-cinnamic acid, apiole, quercetin 3-glucoside, hydroxy-L-proline, hypaphorine, khellol glucoside, umbelliferose, violaxanthin, ergotamine tartrate, palmatine chloride, deacylgymnemic acid, methyl laurate, and palmitoyl acetate. In DPPH scavenging assays, the IC50 value of the P. aquilinum leaf extract was 10.04 µg/ml, while IC50 of BHT and rutin were 7.93 and 6.35 µg/ml. In mosquitocidal assays, LC50 of P. aquilinum leaf extract against Anopheles stephensi larvae and pupae were 220.44 ppm (larva I), 254.12 ppm (II), 302.32 ppm (III), 395.12 ppm (IV), and 502.20 ppm (pupa). LC50 of P. aquilinum-synthesized AgNP were 7.48 ppm (I), 10.68 ppm (II), 13.77 ppm (III), 18.45 ppm (IV), and 31.51 ppm (pupa). In the field, the application of P. aquilinum extract and AgNP (10 × LC50) led to 100 % larval reduction after 72 h. Both the P. aquilinum extract and AgNP reduced longevity and fecundity of An. stephensi adults. Smoke toxicity experiments conducted against An. stephensi adults showed that P. aquilinum leaf-, stem-, and root-based coils evoked mortality rates comparable to the permethrin-based positive control (57, 50, 41, and 49 %, respectively). Furthermore, the antiplasmodial activity of P. aquilinum leaf extract and green-synthesized AgNP was evaluated against CQ-resistant (CQ-r) and CQ-sensitive (CQ-s) strains of P. falciparum. IC50 of P. aquilinum were 62.04 µg/ml (CQ-s) and 71.16 µg/ml (CQ-r); P. aquilinum-synthesized AgNP achieved IC50 of 78.12 µg/ml (CQ-s) and 88.34 µg/ml (CQ-r). Overall, our results highlighted that fern-synthesized AgNP could be candidated as a new tool against chloroquine-resistant P. falciparum and different developmental instars of its primary vector An. stephensi. Further research on nanosynthesis routed by the LC/MS-identified constituents is ongoing.


Assuntos
Antimaláricos/química , Inseticidas/química , Extratos Vegetais/química , Pteridium/química , Prata/toxicidade , Animais , Anopheles/efeitos dos fármacos , Anopheles/fisiologia , Antimaláricos/toxicidade , Humanos , Inseticidas/toxicidade , Larva/efeitos dos fármacos , Malária/parasitologia , Malária/prevenção & controle , Nanopartículas/química , Extratos Vegetais/metabolismo , Folhas de Planta/química , Folhas de Planta/metabolismo , Plasmodium falciparum/efeitos dos fármacos , Plasmodium falciparum/fisiologia , Pteridium/metabolismo , Prata/química , Difração de Raios X
4.
Sci Rep ; 5: 12729, 2015 Aug 03.
Artigo em Inglês | MEDLINE | ID: mdl-26235136

RESUMO

Predator-prey interactions form the core of biological control of arthropod pests. Which tools can be used to monitor and collect carnivorous arthropods in natural habitats and targeted crops? Eco-friendly and effective field lures are urgently needed. In this research, we carried out olfactometer experiments assess innate positive chemotaxis to pollen of seven crop and banker plant by two important predatory biological control agents: the coccinellid Propylea japonica (Thunberg) and the anthocorid Orius sauteri (Poppius). We compared the attractiveness of pollens from crops and banker plants to that of common prey homogenates (aphids and thrips, respectively). Attractiveness of the tested odor sources was checked via field trapping experiments conducted in organic apple orchards and by release-recapture assays in organic greenhouse tomato crops. Maize and canola pollen were attractive to both P. japonica and O. sauteri, in laboratory and field assays. P. japonica was highly attracted by balm mint pollen, whereas O. sauteri was attracted by alfalfa pollen. Our results encourage the use of pollen from crops and banker plants as low-cost and eco-friendly attractors to enhance the monitoring and attraction of arthropod predators in biological control programs.


Assuntos
Agentes de Controle Biológico , Quimiotaxia , Besouros/fisiologia , Produção Agrícola/métodos , Heterópteros/fisiologia , Pólen , Animais , Afídeos , China , Produtos Agrícolas , Feminino , Solanum lycopersicum , Masculino , Malus , Medicago sativa , Olfatometria/métodos , Tisanópteros , Zea mays
5.
PLoS One ; 9(3): e93153, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24676345

RESUMO

The introduction of sown wildflower strips favours the establishment of pollinator communities, with special reference to social Apoidea. Here, we evaluated the late summer flowering Cephalaria transsylvanica as suitable species for strips providing food for pollinators in paucity periods. C. transsylvanica showed no particular requirements in terms of seed germination and growth during summer. This plant had an excellent potential of self-seeding and competitiveness towards weed competitors. C. transsylvanica prevented from entomophilous pollination showed inbreeding depression, with a decrease in seed-set and accumulation of seed energy reserves. However, C. transsylvanica did not appear to be vulnerable in terms of pollination biology since it had a wide range of pollinators including bees, hoverflies and Lepidoptera. C. transsylvanica was visited mainly by honeybees and bumblebees and these latter pollinators increased their visits on C. transsylvanica flowers during early autumn. This plant may be useful as an abundant source of pollen during food paucity periods, such as autumn. We proposed C. transsylvanica for incorporation into flower strips to be planted in non-cropped farmlands in intensively managed agricultural areas as well as in proximity of beehives. The latter option may facilitate the honeybees collecting pollen and nectar for the colony, thereby ensuring robustness to overcome the winter season.


Assuntos
Abelhas , Dipsacaceae , Flores , Polinização , Estações do Ano , Animais , Dipsacaceae/crescimento & desenvolvimento , Insetos , Pólen/ultraestrutura , Reprodução , Sementes/crescimento & desenvolvimento
6.
Microb Ecol ; 67(1): 195-204, 2014 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-24233285

RESUMO

Facultative bacterial endosymbionts can play an important role in the evolutionary trajectory of their hosts. Aphids (Hemiptera: Aphididae) are infected with a wide variety of facultative endosymbionts that can confer ecologically relevant traits, which in turn may drive microevolutionary processes in a dynamic selective environment. However, relatively little is known about how symbiont diversity is structured in most aphid species. Here, we investigate facultative symbiont species richness and prevalence among world-wide populations of the cowpea aphid, Aphis craccivora Koch. We surveyed 44 populations of A. craccivora, and detected 11 strains of facultative symbiotic bacteria, representing six genera. There were two significant associations between facultative symbiont and aphid food plant: the symbiont Arsenophonus was found at high prevalence in A. craccivora populations collected from Robinia sp. (locust), whereas the symbiont Hamiltonella was almost exclusively found in A. craccivora populations from Medicago sativa (alfalfa). Aphids collected from these two food plants also had divergent mitochondrial haplotypes, potentially indicating the formation of specialized aphid lineages associated with food plant (host-associated differentiation). The role of facultative symbionts in this process remains to be determined. Overall, observed facultative symbiont prevalence in A. craccivora was lower than that of some other well-studied aphids (e.g., Aphis fabae and Acyrthosiphon pisum), possibly as a consequence of A. craccivora's almost purely parthenogenetic life history. Finally, most (70 %) of the surveyed populations were polymorphic for facultative symbiont infection, indicating that even when symbiont prevalence is relatively low, symbiont-associated phenotypic variation may allow population-level evolutionary responses to local selection.


Assuntos
Afídeos/microbiologia , Bactérias/classificação , Simbiose , Animais , Afídeos/genética , Bactérias/genética , Bactérias/isolamento & purificação , Biodiversidade , Haplótipos , Medicago sativa , Mitocôndrias/genética , Dados de Sequência Molecular , Robinia
7.
Ecotoxicology ; 21(8): 2214-21, 2012 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-22868904

RESUMO

The transgenic Cry1Ac (Bt toxin) + CpTI (Cowpea Trypsin Inhibitor) cotton cultivar CCRI41 is increasingly used in China and potential side effects on the honey bee Apis mellifera L. have been documented recently. Two studies have assessed potential lethal and sublethal effects in young bees fed with CCRI41 cotton pollen but no effect was observed on learning capacities, although lower feeding activity in exposed honey bees was noted (antifeedant effect). The present study aimed at providing further insights into potential side effects of CCRI41 cotton on honey bees. Emerging honey bees were exposed to different pollen diets using no-choice feeding protocols (chronic exposure) in controlled laboratory conditions and we aimed at documenting potential mechanisms underneath the CCRI41 antifeedant effect previously reported. Activity of midgut proteolytic enzyme of young adult honey bees fed on CCRI41 cotton pollen were not significantly affected, i.e. previously observed antifeedant effect was not linked to disturbed activity of the proteolytic enzymes in bees' midgut. Hypopharyngeal gland development was assessed by quantifying total extractable proteins from the glands. Results suggested that CCRI41 cotton pollen carries no risk to hypopharyngeal gland development of young adult honey bees. In the two bioassays, honey bees exposed to 1 % soybean trypsin inhibitor were used as positive controls for both midgut proteolytic enzymes and hypopharyngeal gland proteins quantification, and bees exposed to 48 ppb (part per billion) (i.e. 48 ng g(-1)) imidacloprid were used as controls for exposure to a sublethal concentration of toxic product. The results show that the previously reported antifeedant effect of CCRI41 cotton pollen on honey bees is not linked to effects on their midgut proteolytic enzymes or on the development of their hypopharyngeal glands. The results of the study are discussed in the framework of risk assessment of transgenic crops on honey bees.


Assuntos
Proteínas de Bactérias/farmacologia , Abelhas/efeitos dos fármacos , Endotoxinas/farmacologia , Gossypium/genética , Proteínas Hemolisinas/farmacologia , Inseticidas/toxicidade , Plantas Geneticamente Modificadas/genética , Animais , Bacillus thuringiensis , Toxinas de Bacillus thuringiensis , Abelhas/enzimologia , Abelhas/crescimento & desenvolvimento , Abelhas/microbiologia , Sistema Digestório/efeitos dos fármacos , Sistema Digestório/crescimento & desenvolvimento , Peptídeo Hidrolases/metabolismo , Proteínas de Plantas/farmacologia , Pólen/genética , Pólen/metabolismo , Medição de Risco , Inibidores da Tripsina/farmacologia
8.
Ecotoxicology ; 19(8): 1612-9, 2010 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-20872243

RESUMO

Transgenic Cry1Ac+CpTI cotton (CCRI41) is a promising cotton cultivar throughout China but side effects and especially sublethal effects of this transgenic cultivar on beneficial insects remain poorly studied. More specifically potential sublethal effects on behavioural traits of the honey bee Apis mellifera L. have not been formally assessed despite the importance of honey bees for pollination. The goal of our study was to assess potential effects of CCRI41 cotton pollen on visual and olfactory learning by honey bees. After a 7-day oral chronic exposure to honey mixed with either CCRI41 pollen, imidacloprid-treated conventional pollen (used as positive sublethal control) or conventional pollen (control), learning performance was evaluated by the classical proboscis extension reflex (PER) procedure as well as a T-tube maze test. The latter assay was designed as a new device to assess potential side effects of pesticides on visual associative learning of honey bees. These two procedures were complementary because the former focused on olfactory learning while the latter was involved in visual learning based on visual orientation ability. Oral exposure to CCRI41 pollen did not affect learning capacities of honey bees in both the T-tube maze and PER tests. However, exposure to imidacloprid resulted in reduced visual learning capacities in T-tube maze evaluation and decreased olfactory learning performances measured with PER. The implications of these results are discussed in terms of risks of transgenic CCRI41 cotton crops for honey bees.


Assuntos
Proteínas de Bactérias/toxicidade , Abelhas/efeitos dos fármacos , Endotoxinas/toxicidade , Gossypium/genética , Proteínas Hemolisinas/toxicidade , Animais , Toxinas de Bacillus thuringiensis , China , Condicionamento Clássico , Imidazóis/toxicidade , Inseticidas/toxicidade , Aprendizagem/efeitos dos fármacos , Aprendizagem em Labirinto/efeitos dos fármacos , Neonicotinoides , Nitrocompostos/toxicidade , Plantas Geneticamente Modificadas , Pólen/genética , Pólen/toxicidade , Reflexo , Medição de Risco/métodos
9.
Ecotoxicology ; 19(8): 1452-9, 2010 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-20700762

RESUMO

Transgenic Cry1Ac + CpTI cotton (CCRI41) is increasingly planted throughout China. However, negative effects of this cultivar on the honey bee Apis mellifera L., the most important pollinator for cultivated ecosystem, remained poorly investigated. The objective of our study was to evaluate the potential side effects of transgenic Cry1Ac + CpTI pollen from cotton on young adult honey bees A. mellifera L. Two points emphasized the significance of our study: (1) A higher expression level of insecticidal protein Cry1Ac in pollen tissues was detected (when compared with previous reports). In particular, Cry1Ac protein was detected at 300 ± 4.52 ng g(-1) [part per billion (ppb)] in pollen collected in July, (2) Effects on chronic mortality and feeding behaviour in honey bees were evaluated using a no-choice dietary feeding protocol with treated pollen, which guarantee the highest exposure level to bees potentially occurring in natural conditions (worst case scenario). Tests were also conducted using imidacloprid-treated pollen at a concentration of 48 ppb as positive control for sublethal effect on feeding behaviour. Our results suggested that Cry1Ac + CpTI pollen carried no lethal risk for honey bees. However, during a 7-day oral exposure to the various treatments (transgenic, imidacloprid-treated and control), honey bee feeding behaviour was disturbed and bees consumed significantly less CCRI41 cotton pollen than in the control group in which bees were exposed to conventional cotton pollen. It may indicate an antifeedant effect of CCRI41 pollen on honey bees and thus bees may be at risk because of large areas are planted with transgenic Bt cotton in China. This is the first report suggesting a potential sublethal effect of CCRI41 cotton pollen on honey bees. The implications of the results are discussed in terms of risk assessment for bees as well as for directions of future work involving risk assessment of CCRI41 cotton.


Assuntos
Proteínas de Bactérias/toxicidade , Abelhas/efeitos dos fármacos , Endotoxinas/toxicidade , Gossypium/genética , Proteínas Hemolisinas/toxicidade , Inseticidas/toxicidade , Animais , Toxinas de Bacillus thuringiensis , Comportamento Alimentar/efeitos dos fármacos , Regulação da Expressão Gênica , Imidazóis/toxicidade , Neonicotinoides , Nitrocompostos/toxicidade , Plantas Geneticamente Modificadas , Pólen/genética , Pólen/toxicidade , Medição de Risco/métodos
10.
Annu Rev Entomol ; 52: 81-106, 2007.
Artigo em Inglês | MEDLINE | ID: mdl-16842032

RESUMO

Traditionally, measurement of the acute toxicity of pesticides to beneficial arthropods has relied largely on the determination of an acute median lethal dose or concentration. However, the estimated lethal dose during acute toxicity tests may only be a partial measure of the deleterious effects. In addition to direct mortality induced by pesticides, their sublethal effects on arthropod physiology and behavior must be considered for a complete analysis of their impact. An increasing number of studies and methods related to the identification and characterization of these effects have been published in the past 15 years. Review of sublethal effects reported in published literature, taking into account recent data, has revealed new insights into the sublethal effects of pesticides including effects on learning performance, behavior, and neurophysiology. We characterize the different types of sublethal effects on beneficial arthropods, focusing mainly on honey bees and natural enemies, and we describe the methods used in these studies. Finally, we discuss the potential for developing experimental approaches that take into account these sublethal effects in integrated pest management and the possibility of integrating their evaluation in pesticide registration procedures.


Assuntos
Artrópodes/efeitos dos fármacos , Comportamento Animal/efeitos dos fármacos , Praguicidas/farmacologia , Animais , Ecossistema , Fertilidade/efeitos dos fármacos , Imunidade Inata/efeitos dos fármacos , Controle de Insetos , Aprendizagem/efeitos dos fármacos , Estágios do Ciclo de Vida/efeitos dos fármacos , Locomoção/efeitos dos fármacos , Longevidade/efeitos dos fármacos , Sistema Nervoso/efeitos dos fármacos , Orientação/efeitos dos fármacos , Pólen , Razão de Masculinidade
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA