Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Int J Mol Sci ; 22(21)2021 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-34769291

RESUMO

Omega-3 polyunsaturated fatty acids (n-3 PUFAs) play an important role in the development, maintenance, and function of the brain. Dietary supplementation of n-3 PUFAs in neurological diseases has been a subject of particular interest in preventing cognitive deficits, and particularly in age-related neurodegeneration. Developing strategies for the efficient delivery of these lipids to the brain has presented a challenge in recent years. We recently reported the preparation of n-3 PUFA-rich nanoliposomes (NLs) from salmon lecithin, and demonstrated their neurotrophic effects in rat embryo cortical neurons. The objective of this study was to assess the ability of these NLs to deliver PUFAs in cellulo and in vivo (in mice). NLs were prepared using salmon lecithin rich in n-3 PUFAs (29.13%), and characterized with an average size of 107.90 ± 0.35 nm, a polydispersity index of 0.25 ± 0.01, and a negative particle-surface electrical charge (-50.4 ± 0.2 mV). Incubation of rat embryo cortical neurons with NLs led to a significant increase in docosahexaenoic acid (DHA) (51.5%, p < 0.01), as well as palmitic acid, and a small decrease in oleic acid after 72 h (12.2%, p < 0.05). Twenty mice on a standard diet received oral administration of NLs (12 mg/mouse/day; 5 days per week) for 8 weeks. Fatty acid profiles obtained via gas chromatography revealed significant increases in cortical levels of saturated, monounsaturated, and n-3 (docosahexaenoic acid,) and n-6 (docosapentaenoic acid and arachidonic acid) PUFAs. This was not the case for the hippocampus or in the liver. There were no effects on plasma lipid levels, and daily monitoring confirmed NL biocompatibility. These results demonstrate that NLs can be used for delivery of PUFAs to the brain. This study opens new research possibilities in the development of preventive as well as therapeutic strategies for age-related neurodegeneration.


Assuntos
Ácidos Graxos Ômega-3/administração & dosagem , Ácidos Graxos Insaturados/sangue , Lecitinas/administração & dosagem , Neurônios/citologia , Salmão/metabolismo , Administração Oral , Animais , Disponibilidade Biológica , Células Cultivadas , Cromatografia Gasosa , Ácidos Docosa-Hexaenoicos/análise , Ácidos Graxos Ômega-3/farmacocinética , Feminino , Hipocampo/química , Lecitinas/farmacocinética , Lipossomos , Fígado/química , Masculino , Camundongos , Nanoestruturas , Neurônios/química , Ácido Oleico/análise , Ácido Palmítico/análise , Tamanho da Partícula , Cultura Primária de Células , Ratos
2.
Mar Drugs ; 11(11): 4294-317, 2013 Oct 30.
Artigo em Inglês | MEDLINE | ID: mdl-24177675

RESUMO

A phospholipopeptidic complex obtained by the enzymatic hydrolysis of salmon heads in green conditions; exert anxiolytic-like effects in a time and dose-dependent manner, with no affection of locomotor activity. This study focused on the physico-chemical properties of the lipidic and peptidic fractions from this natural product. The characterization of mineral composition, amino acid and fatty acids was carried out. Stability of nanoemulsions allowed us to realize a behavioral study conducted with four different tests on 80 mice. This work highlighted the dose dependent effects of the natural complex and its various fractions over a period of 14 days compared to a conventional anxiolytic. The intracellular redox status of neural cells was evaluated in order to determine the free radicals scavenging potential of these products in the central nervous system (CNS), after mice sacrifice. The complex peptidic fraction showed a strong scavenging property and similar results were found for the complex as well as its lipidic fraction. For the first time, the results of this study showed the anxiolytic-like and neuroprotective properties of a phospholipopeptidic complex extracted from salmon head. The applications on anxiety disorders might be relevant, depending on the doses, the fraction used and the chronicity of the supplementation.


Assuntos
Ansiolíticos/farmacologia , Ácidos Graxos Insaturados/farmacologia , Ácidos Graxos/farmacologia , Peptídeos/farmacologia , Salmão/metabolismo , Aminoácidos/química , Aminoácidos/metabolismo , Animais , Ansiolíticos/química , Sistema Nervoso Central/efeitos dos fármacos , Ácidos Graxos/química , Ácidos Graxos Insaturados/química , Sequestradores de Radicais Livres/química , Sequestradores de Radicais Livres/farmacologia , Lipídeos/química , Camundongos , Fármacos Neuroprotetores/química , Fármacos Neuroprotetores/farmacologia , Oxirredução/efeitos dos fármacos , Peptídeos/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA