Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Hum Brain Mapp ; 40(18): 5269-5288, 2019 12 15.
Artigo em Inglês | MEDLINE | ID: mdl-31452289

RESUMO

While numerous studies have used magnetic resonance imaging (MRI) to elucidate normative age-related trajectories in subcortical structures across the human lifespan, there exists substantial heterogeneity among different studies. Here, we investigated the normative relationships between age and morphology (i.e., volume and shape), and microstructure (using the T1-weighted/T2-weighted [T1w/T2w] signal ratio as a putative index of myelin and microstructure) of the striatum, globus pallidus, and thalamus across the adult lifespan using a dataset carefully quality controlled, yielding a final sample of 178 for the morphological analyses, and 162 for the T1w/T2w analyses from an initial dataset of 253 healthy subjects, aged 18-83. In accordance with previous cross-sectional studies of adults, we observed age-related volume decrease that followed a quadratic relationship between age and bilateral striatal and thalamic volumes, and a linear relationship in the globus pallidus. Our shape indices consistently demonstrated age-related posterior and medial areal contraction bilaterally across all three structures. Beyond morphology, we observed a quadratic inverted U-shaped relationship between T1w/T2w signal ratio and age, with a peak value occurring in middle age (at around 50 years old). After permutation testing, the Akaike information criterion determined age relationships remained significant for the bilateral globus pallidus and thalamus, for both the volumetric and T1w/T2w analyses. Our findings serve to strengthen and expand upon previous volumetric analyses by providing a normative baseline of morphology and microstructure of these structures to which future studies investigating patients with various disorders can be compared.


Assuntos
Envelhecimento , Corpo Estriado/diagnóstico por imagem , Globo Pálido/diagnóstico por imagem , Longevidade , Imageamento por Ressonância Magnética/tendências , Tálamo/diagnóstico por imagem , Adolescente , Adulto , Idoso , Idoso de 80 Anos ou mais , Envelhecimento/fisiologia , Corpo Estriado/fisiologia , Feminino , Globo Pálido/fisiologia , Voluntários Saudáveis , Humanos , Longevidade/fisiologia , Imageamento por Ressonância Magnética/métodos , Masculino , Pessoa de Meia-Idade , Tálamo/fisiologia , Adulto Jovem
2.
Brain ; 141(12): 3405-3414, 2018 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-30452554

RESUMO

Magnetic resonance guided focused ultrasound (MRgFUS) thalamotomy is a novel and minimally invasive ablative treatment for essential tremor. The size and location of therapeutic lesions producing the optimal clinical benefits while minimizing adverse effects are not known. We examined these relationships in patients with essential tremor undergoing MRgFUS. We studied 66 patients with essential tremor who underwent MRgFUS between 2012 and 2017. We assessed the Clinical Rating Scale for Tremor (CRST) scores at 3 months after the procedure and tracked the adverse effects (sensory, motor, speech, gait, and dysmetria) 1 day (acute) and 3 months after the procedure. Clinical data associated with the postoperative Day 1 lesions were used to correlate the size and location of lesions with tremor benefit and acute adverse effects. Diffusion-weighted imaging was used to assess whether acute adverse effects were related to lesions encroaching on nearby major white matter tracts (medial lemniscus, pyramidal, and dentato-rubro-thalamic). The area of optimal tremor response at 3 months after the procedure was identified at the posterior portion of the ventral intermediate nucleus. Lesions extending beyond the posterior region of the ventral intermediate nucleus and lateral to the lateral thalamic border were associated with increased risk of acute adverse sensory and motor effects, respectively. Acute adverse effects on gait and dysmetria occurred with lesions inferolateral to the thalamus. Lesions inferolateral to the thalamus or medial to the ventral intermediate nucleus were also associated with acute adverse speech effects. Diffusion-weighted imaging revealed that lesions associated with adverse sensory and gait/dysmetria effects compromised the medial lemniscus and dentato-rubro-thalamic tracts, respectively. Lesions associated with adverse motor and speech effects encroached on the pyramidal tract. Lesions larger than 170 mm3 were associated with an increased risk of acute adverse effects. Tremor improvement and acute adverse effects of MRgFUS for essential tremor are highly dependent on the location and size of lesions. These novel findings could refine current MRgFUS treatment planning and targeting, thereby improving clinical outcomes in patients.


Assuntos
Tremor Essencial/terapia , Tálamo/patologia , Terapia por Ultrassom , Idoso , Imagem de Tensor de Difusão , Tremor Essencial/diagnóstico , Tremor Essencial/patologia , Feminino , Humanos , Imagem por Ressonância Magnética Intervencionista , Masculino , Sensibilidade e Especificidade , Resultado do Tratamento , Substância Branca/patologia
3.
Neuroimage ; 170: 182-198, 2018 04 15.
Artigo em Inglês | MEDLINE | ID: mdl-28259781

RESUMO

Accurate automated quantification of subcortical structures is a greatly pursued endeavour in neuroimaging. In an effort to establish the validity and reliability of these methods in defining the striatum, globus pallidus, and thalamus, we investigated differences in volumetry between manual delineation and automated segmentations derived by widely used FreeSurfer and FSL packages, and a more recent segmentation method, the MAGeT-Brain algorithm. In a first set of experiments, the basal ganglia and thalamus of thirty subjects (15 first episode psychosis [FEP], 15 controls) were manually defined and compared to the labels generated by the three automated methods. Our results suggest that all methods overestimate volumes compared to the manually derived "gold standard", with the least pronounced differences produced using MAGeT. The least between-method variability was noted for the striatum, whereas marked differences between manual segmentation and MAGeT compared to FreeSurfer and FSL emerged for the globus pallidus and thalamus. Correlations between manual segmentation and automated methods were strongest for MAGeT (range: 0.51 to 0.92; p<0.01, corrected), whereas FreeSurfer and FSL showed moderate to strong Pearson correlations (range 0.44-0.86; p<0.05, corrected), with the exception of FreeSurfer pallidal (r=0.31, p=0.10) and FSL thalamic segmentations (r=0.37, p=0.051). Bland-Altman plots highlighted a tendency for greater volumetric differences between manual labels and automated methods at the lower end of the distribution (i.e. smaller structures), which was most prominent for bilateral thalamus across automated pipelines, and left globus pallidus for FSL. We then went on to examine volume and shape of the basal ganglia structures using automated techniques in 135 FEP patients and 88 controls. The striatum and globus pallidus were significantly larger in FEP patients compared to controls bilaterally, irrespective of the method used. MAGeT-Brain was more sensitive to shape-based group differences, and uncovered widespread surface expansions in the striatum and globus pallidus bilaterally in FEP patients compared to controls, and surface contractions in bilateral thalamus (FDR-corrected). By contrast, after using a recommended cluster-wise thresholding method, FSL only detected differences in the right ventral striatum (FEP>Control) and one cluster of the left thalamus (Control>FEP). These results suggest that different automated pipelines segment subcortical structures with varying degrees of variability compared to manual methods, with particularly pronounced differences found with FreeSurfer and FSL for the globus pallidus and thalamus.


Assuntos
Corpo Estriado/diagnóstico por imagem , Globo Pálido/diagnóstico por imagem , Processamento de Imagem Assistida por Computador/normas , Imageamento por Ressonância Magnética/normas , Neuroimagem/normas , Transtornos Psicóticos/diagnóstico por imagem , Tálamo/diagnóstico por imagem , Adulto , Corpo Estriado/anatomia & histologia , Feminino , Globo Pálido/anatomia & histologia , Humanos , Processamento de Imagem Assistida por Computador/métodos , Imageamento por Ressonância Magnética/métodos , Masculino , Neuroimagem/métodos , Transtornos Psicóticos/patologia , Reprodutibilidade dos Testes , Tálamo/anatomia & histologia , Adulto Jovem
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA