Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Antioxidants (Basel) ; 11(1)2021 Dec 24.
Artigo em Inglês | MEDLINE | ID: mdl-35052539

RESUMO

Along with genetic mutations, aberrant epigenetic alterations are the initiators of head and neck cancer carcinogenesis. Currently, several drugs are being developed to correct these epigenetic alterations, known as epidrugs. Some compounds with an antioxidant effect have been shown to be effective in preventing these malignant lesions and in minimizing the complications derived from cytotoxic treatment. Furthermore, in vitro and in vivo studies show a promising role in the treatment of head and neck squamous cell carcinoma (HNSCC). This is the case of supplements with DNA methylation inhibitory function (DNMTi), such as epigallocatechin gallate, sulforaphane, and folic acid; histone deacetylase inhibitors (HDACi), such as sodium butyrate and melatonin or histone acetyltransferase inhibitors (HATi), such as curcumin. The objective of this review is to describe the role of some antioxidants and their epigenetic mechanism of action, with special emphasis on melatonin and butyric acid given their organic production, in the prevention and treatment of HNSCC.

2.
Int J Mol Sci ; 20(22)2019 Nov 16.
Artigo em Inglês | MEDLINE | ID: mdl-31744113

RESUMO

Previously we demonstrated, in rats, that treatment with growth hormone (GH) and rehabilitation, carried out immediately after a motor cortical ablation, significantly improved the motor affectation produced by the lesion and induced the re-expression of nestin in the contralateral motor cortex. Here we analyze cortical proliferation after ablation of the frontal motor cortex and investigate the re-expression of nestin in the contralateral motor cortex and the role of the striatum and thalamus in motor recovery. The rats were subjected to ablation of the frontal motor cortex in the dominant hemisphere or sham-operated and immediately treated with GH or the vehicle (V), for five days. At 1 dpi (days post-injury), all rats received daily injections (for four days) of bromodeoxyuridine and five rats were sacrificed at 5 dpi. The other 15 rats (n = 5/group) underwent rehabilitation and were sacrificed at 25 dpi. GH induced the greatest number of proliferating cells in the perilesional cortex. GH and rehabilitation produced the functional recovery of the motor lesion and increased the expression of nestin in the striatum. In the thalamic ventral nucleus ipsilateral to the lesion, cells positive for nestin and actin were detected, but this was independent on GH. Our data suggest that GH-induced striatal nestin is involved in motor recovery.


Assuntos
Actinas/metabolismo , Lesões Encefálicas/tratamento farmacológico , Corpo Estriado/metabolismo , Hormônio do Crescimento/uso terapêutico , Nestina/metabolismo , Tálamo/metabolismo , Animais , Lesões Encefálicas/reabilitação , Proliferação de Células , Corpo Estriado/patologia , Expressão Gênica , Masculino , Córtex Motor/lesões , Córtex Motor/patologia , Ratos , Recuperação de Função Fisiológica , Tálamo/patologia
3.
Int J Mol Sci ; 16(12): 30470-82, 2015 Dec 21.
Artigo em Inglês | MEDLINE | ID: mdl-26703581

RESUMO

UNLABELLED: The aim of this study is to describe the results obtained after growth hormone (GH) treatment and neurorehabilitation in a young man that suffered a very grave traumatic brain injury (TBI) after a plane crash. METHODS: Fifteen months after the accident, the patient was treated with GH, 1 mg/day, at three-month intervals, followed by one-month resting, together with daily neurorehabilitation. Blood analysis at admission showed that no pituitary deficits existed. At admission, the patient presented: spastic tetraplegia, dysarthria, dysphagia, very severe cognitive deficits and joint deformities. Computerized tomography scanners (CT-Scans) revealed the practical loss of the right brain hemisphere and important injuries in the left one. Clinical and blood analysis assessments were performed every three months for three years. Feet surgery was needed because of irreducible equinovarus. RESULTS: Clinical and kinesitherapy assessments revealed a prompt improvement in cognitive functions, dysarthria and dysphagia disappeared and three years later the patient was able to live a practically normal life, walking alone and coming back to his studies. No adverse effects were observed during and after GH administration. CONCLUSIONS: These results, together with previous results from our group, indicate that GH treatment is safe and effective for helping neurorehabilitation in TBI patients, once the acute phase is resolved, regardless of whether or not they have GH-deficiency (GHD).


Assuntos
Acidentes Aeronáuticos , Lesões Encefálicas/tratamento farmacológico , Hormônio do Crescimento/uso terapêutico , Adolescente , Lesões Encefálicas/etiologia , Lesões Encefálicas/reabilitação , Hormônio do Crescimento/administração & dosagem , Humanos , Cinesiologia Aplicada , Masculino
4.
Med Clin (Barc) ; 135(14): 665-70, 2010 Nov 13.
Artigo em Espanhol | MEDLINE | ID: mdl-20045134

RESUMO

Growth hormone (GH) is a pleiotropic hormone, expressed at pituitary and peripheral level, which plays a number of different roles far beyond of those classically described. Among these effects it is remarkable the neurotropic role of GH: the hormone increases the proliferation and survival of neural precursors in response to neurological injuries. At the cardiovascular level, GH improves the lipidic profile and decreases the factors of cardiac risk; the hormone recovers the endothelial function, improves the cardiac function and potentiates revascularisation in ischemic territories. Differently to that occurring with autocrine GH, exogenous GH administration does not seem to be related to oncogenesis. According to its effects, there are multiple potential clinical applications of GH: acute treatment of brain injury, due to its antiapoptotic effect; central or peripheral neural regeneration; acute treatment of perinatal anoxia, prevention cerebral palsy; revascularisation of ischemic areas; decrease of the time of bone consolidation after a bone fracture; and torpid ulcer healing.


Assuntos
Hormônio do Crescimento Humano/uso terapêutico , Adulto , Animais , Apoptose/efeitos dos fármacos , Comunicação Autócrina , Lesões Encefálicas/tratamento farmacológico , Doenças Cardiovasculares/tratamento farmacológico , Sobrevivência Celular/efeitos dos fármacos , Criança , Avaliação Pré-Clínica de Medicamentos , Coração/efeitos dos fármacos , Hormônio do Crescimento Humano/administração & dosagem , Hormônio do Crescimento Humano/efeitos adversos , Hormônio do Crescimento Humano/fisiologia , Humanos , Neoplasias/induzido quimicamente , Regeneração Nervosa/efeitos dos fármacos , Neurogênese/efeitos dos fármacos , Neurônios/efeitos dos fármacos , Nervos Periféricos/efeitos dos fármacos , Ratos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA