Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Métodos Terapêuticos e Terapias MTCI
Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
BMC Plant Biol ; 21(1): 414, 2021 Sep 09.
Artigo em Inglês | MEDLINE | ID: mdl-34503445

RESUMO

BACKGROUND: Adventitious root formation is considered a major developmental step during the propagation of difficult to root plants, especially in horticultural crops. Recently, adventitious roots induced through plant tissue culture methods have also been used for production of phytochemicals such as flavonoids, anthocyanins and anthraquinones. It is rather well understood which horticultural species will easily form adventitious roots, but the factors affecting this process at molecular level or regulating the induction process in in vitro conditions are far less known. The present study was conducted to identify transcripts involved in in vitro induction and formation of adventitious roots using Arnebia euchroma leaves at different time points (intact leaf (control), 3 h, 12 h, 24 h, 3 d, 7 d, 10 d and 15 d). A. euchroma is an endangered medicinal Himalayan herb whose root contains red naphthoquinone pigments. These phytoconstituents are widely used as an herbal ingredient in Asian traditional medicine as well as natural colouring agent in food and cosmetics. RESULTS: A total of 137.93 to 293.76 million raw reads were generated and assembled to 54,587 transcripts with average length of 1512.27 bps and N50 of 2193 bps, respectively. In addition, 50,107 differentially expressed genes were identified and found to be involved in plant hormone signal transduction, cell wall modification and wound induced mitogen activated protein kinase signalling. The data exhibited dominance of auxin responsive (AUXIN RESPONSE FACTOR8, IAA13, GRETCHEN HAGEN3.1) and sucrose translocation (BETA-31 FRUCTOFURANOSIDASE and MONOSACCHARIDE-SENSING protein1) genes during induction phase. In the initiation phase, the expression of LATERAL ORGAN BOUNDARIES DOMAIN16, EXPANSIN-B15, ENDOGLUCANASE25 and LEUCINE-rich repeat EXTENSION-like proteins was increased. During the expression phase, the same transcripts, with exception of LATERAL ORGAN BOUNDARIES DOMAIN16 were identified. Overall, the transcriptomic analysis revealed a similar patterns of genes, however, their expression level varied in subsequent phases of in vitro adventitious root formation in A. euchroma. CONCLUSION: The results presented here will be helpful in understanding key regulators of in vitro adventitious root development in Arnebia species, which may be deployed in the future for phytochemical production at a commercial scale.


Assuntos
Boraginaceae/genética , Folhas de Planta , Proteínas de Plantas/genética , Raízes de Plantas/crescimento & desenvolvimento , Raízes de Plantas/genética , Boraginaceae/crescimento & desenvolvimento , Perfilação da Expressão Gênica , Regulação da Expressão Gênica de Plantas , Indóis/farmacologia , Anotação de Sequência Molecular , Folhas de Planta/efeitos dos fármacos , Folhas de Planta/genética , Plantas Medicinais/genética , Plantas Medicinais/crescimento & desenvolvimento , Análise de Sequência de RNA , Técnicas de Cultura de Tecidos/métodos
2.
Crit Rev Biotechnol ; 41(4): 564-579, 2021 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-33586555

RESUMO

The current trends of consumer-driven demands for natural therapeutics and the availability of evidence-based phytopharmaceuticals from traditional knowledge has once again brought the medicinal plants into forefront of health. In 2019, World Health Organization global report on traditional and complementary medicine has also substantiated the revival of herbal medicine including its convergence with conventional medicine for the management and prevention of diseases. It means these industries need plenty of plant materials to meet the unprecedented demands of herbal formulations. However, it is pertinent to mention here that around 70-80% medicinal plants are sourced from the wild and most of such highly acclaimed plants are listed under Rare, Endangered and Threatened species by IUCN. Additionally, over 30% traditional health formulations are based on underground plant parts, which lead to the uprooting of plants. Overharvesting from limited plant populations, meager conventional cultivation and a rising fondness for natural products exerting enormous pressure on natural habitats. Therefore, the nondestructive means of phytochemical production employing biotechnological tools could be used for sustainable production and consumption patterns. In recent years, a number of reports described the use of adventitious roots induced under in vitro conditions for the extraction of phytochemicals on a sustainable basis. In this article, efforts are made to review recent developments in this area as well as understand the induction mechanisms of adventitious roots, their in vitro cultivation, probable factors that affect the growth and metabolite production, and assess the possibility of industrial scale production to meet the rising demands of natural herbs.


Assuntos
Produtos Biológicos , Plantas Medicinais , Compostos Fitoquímicos , Fitoterapia , Raízes de Plantas
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA