Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Fish Shellfish Immunol ; 130: 283-293, 2022 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-36122635

RESUMO

Deltamethrin (DM) is one of the most toxic but widely used pyrethroid insecticides. Even though a non-target animal, fish are at high risk as they are deficient in the enzyme system that hydrolyses pyrethroids. Enhancing the immune system is a potential method in preventing fish diseases. The present investigation aims to study the modulations in the immune response-related parameters in Oreochromis niloticus that were exposed to DM, by dietary supplementation of aqueous root extract of Asparagus racemosus (ARE). The experiment compared fish in control, DM (1 µg/L) exposed (added to water), ARE (10 g, 20 g, and 30 g ARE/kg of feed) supplemented, and DM-ARE cotreated groups. After 21 days of experimental period, serological, histopathological, and immune response related-gene and protein analysis were carried out. The DM-ARE cotreated group showed significant increase in weight gain, specific growth rate, and decreased feed conversion ratio compared to the DM exposed group. The ARE cotreatment could significantly revert the alteration induced by DM in lysozyme, respiratory burst, myeloperoxidase, C-reactive protein, glucose, cortisol, total protein, albumin, and triglyceride levels. The liver histopathology showed membrane breakage, severe necrosis, infiltration of inflammatory cells, melano-macrophages, and nuclear atrophy, and the kidney showed tubular necrosis, hematopoietic necrosis, Bowman's capsule edema, and glomerulus degeneration in DM exposed group. In ARE cotreated group, the liver showed regenerative cellular changes and only mild to moderate cellular damages, and the kidney tubules and glomerulus had intact structure. ARE discernibly regulated the expression of immune-related genes and proteins (IgM, TNFα, IFN-γ, IL-1ß, and IL-8) in fish. The DM-ARE cotreated groups showed reduced cumulative mortality and higher relative percent survival on experimental challenge with Aeromonas hydrophila compared to the DM group. Thus, ARE possess protective potential against DM-induced toxicity, and can be used as a cost-effective technique in aquafarming.


Assuntos
Ciclídeos , Doenças dos Peixes , Inseticidas , Piretrinas , Ração Animal/análise , Animais , Proteína C-Reativa/análise , Dieta/veterinária , Suplementos Nutricionais/análise , Doenças dos Peixes/induzido quimicamente , Glucose , Hidrocortisona , Imunoglobulina M , Inseticidas/toxicidade , Interleucina-8 , Muramidase , Necrose , Nitrilas , Peroxidase , Extratos Vegetais/farmacologia , Piretrinas/toxicidade , Triglicerídeos , Fator de Necrose Tumoral alfa , Água
2.
Artigo em Inglês | MEDLINE | ID: mdl-33022381

RESUMO

Titanium dioxide nanoparticle (TNP) has been suggested for use in fish farms to prevent or alleviate bacterial diseases owing to its bactericidal property. Unfortunately, the interaction of TNP with cells impaired the host defenses of fish resulting in increased mortality during bacterial challenges. The present study evaluated the efficacy of the ethanolic extract of Tinospora cordifolia (TCE) as a dietary supplement in ameliorating TNP induced toxicity in Nile tilapia (Oreochromis niloticus). The fishes were exposed to environmentally relevant concentration (10 mg/L) of TNP for 14 days and the effect of TCE supplemented feed at 3 different doses (5, 10, and 15 g/kg) was studied. TCE signally increased the weight gain, specific growth rate, and decreased feed conversion ratio in fish. TCE significantly (P < 0.05) ameliorated the toxic effects caused by TNP by increasing the antioxidant (CAT, SOD, GPx) activity and decreasing the levels of serum enzymes (ALT, AST, ALP, ACP), macromolecular oxidation, excessive ROS production, and pro-inflammatory cytokines (IL-1ß, IL-6, IL-8, INF-γ, TNF-α, PGE-2). TNP bioaccumulation and histopathological alterations in gill, liver, and kidney were also significantly alleviated by TCE supplementation. TCE perceptibly regulated the expression of heat shock proteins (HSP60, -70), MAPKs (pERK1/2, pp38), antioxidant (NRF2, Keap1, HO-1), apoptotic (p53, PDRG1), and anti-apoptotic (AKT, Bcl2) proteins in fish. Regarding disease resistance, the TCE co-treated groups showed reduced cumulative mortality and higher relative percent survival with A. hydrophila. Our results suggest that TNP-induced apoptosis is mediated by the MAPK/NRF2/Keap1 pathway and underlines the therapeutic potential of TCE in aqua-farming.


Assuntos
Ciclídeos/metabolismo , Proteínas de Peixes/metabolismo , Estresse Oxidativo/efeitos dos fármacos , Extratos Vegetais/farmacologia , Transdução de Sinais/efeitos dos fármacos , Tinospora/química , Titânio/toxicidade , Aeromonas hydrophila/fisiologia , Animais , Antioxidantes/metabolismo , Apoptose/efeitos dos fármacos , Ciclídeos/microbiologia , Resistência à Doença/efeitos dos fármacos , Ativação Enzimática/efeitos dos fármacos , Doenças dos Peixes/metabolismo , Doenças dos Peixes/microbiologia , Doenças dos Peixes/prevenção & controle , Proteína 1 Associada a ECH Semelhante a Kelch/metabolismo , Proteínas Quinases Ativadas por Mitógeno/metabolismo , Fator 2 Relacionado a NF-E2/metabolismo , Nanopartículas/toxicidade
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA