Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Métodos Terapêuticos e Terapias MTCI
Base de dados
País/Região como assunto
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Br J Radiol ; 90(1074): 20170004, 2017 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-28406315

RESUMO

OBJECTIVE: Boron neutron-capture therapy (BNCT) has been used to inhibit the growth of various types of cancers. In this study, we developed a 10BSH-entrapped water-in-oil-in-water (WOW) emulsion, evaluated it as a selective boron carrier for the possible application of BNCT in hepatocellular carcinoma treatment. METHODS: We prepared the 10BSH-entrapped WOW emulsion using double emulsification technique and then evaluated the delivery efficacy by performing biodistribution experiment on VX-2 rabbit hepatic tumour model with comparison to iodized poppy-seed oil mix conventional emulsion. Neutron irradiation was carried out at Kyoto University Research Reactor with an average thermal neutron fluence of 5 × 1012 n cm-2. Morphological and pathological analyses were performed on Day 14 after neutron irradiation. RESULTS: Biodistribution results have revealed that 10B atoms delivery with WOW emulsion was superior compared with those using iodized poppy-seed oil conventional emulsion. There was no dissemination in abdomen or lung metastasis observed after neutron irradiation in the groups treated with 10BSH-entrapped WOW emulsion, whereas many tumour nodules were recognized in the liver, abdominal cavity, peritoneum and bilateral lobes of the lung in the non-injected group. CONCLUSION: Tumour growth suppression and cancer-cell-killing effect was observed from the morphological and pathological analyses of the 10BSH-entrapped WOW emulsion-injected group, indicating its feasibility to be applied as a novel intra-arterial boron carrier for BNCT. Advances in knowledge: The results of the current study have shown that entrapped 10BSH has the potential to increase the range of therapies available for hepatocellular carcinoma which is considered to be one of the most difficult tumours to cure.


Assuntos
Terapia por Captura de Nêutron de Boro/métodos , Carcinoma Hepatocelular/radioterapia , Neoplasias Hepáticas/radioterapia , Animais , Boro , Modelos Animais de Doenças , Emulsões , Papaver , Óleos de Plantas , Coelhos , Sementes , Distribuição Tecidual
2.
J Cancer Res Clin Oncol ; 142(4): 767-75, 2016 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-26650198

RESUMO

PURPOSE: A more immediate impact for therapeutic approaches of current clinical research efforts is of major interest, which might be obtained by developing a noninvasive radiation dose-escalation strategy, and neutron capture therapy represents one such novel approach. Furthermore, some recent researches on neutron capture therapy have focused on using gadolinium as an alternative or complementary for currently used boron, taking into account several advantages that gadolinium offers. Therefore, in this study, we carried out feasibility evaluation for both single and multiple injections of gadolinium-based MRI contrast agent incorporated in calcium phosphate nanoparticles as neutron capture therapy agent. METHODS: In vivo evaluation was performed on colon carcinoma Col-26 tumor-bearing mice irradiated at nuclear reactor facility of Kyoto University Research Reactor Institute with average neutron fluence of 1.8 × 10(12) n/cm(2). Antitumor effectivity was evaluated based on tumor growth suppression assessed until 27 days after neutron irradiation, followed by histopathological analysis on tumor slice. RESULTS: The experimental results showed that the tumor growth of irradiated mice injected beforehand with Gd-DTPA-incorporating calcium phosphate-based nanoparticles was suppressed up to four times higher compared to the non-treated group, supported by the results of histopathological analysis. CONCLUSION: The results of antitumor effectivity observed on tumor-bearing mice after neutron irradiation indicated possible effectivity of gadolinium-based neutron capture therapy treatment.


Assuntos
Fosfatos de Cálcio/administração & dosagem , Neoplasias do Colo/patologia , Neoplasias do Colo/radioterapia , Meios de Contraste/administração & dosagem , Gadolínio DTPA/administração & dosagem , Imageamento por Ressonância Magnética/métodos , Nanopartículas/administração & dosagem , Terapia por Captura de Nêutron/métodos , Animais , Estudos de Viabilidade , Feminino , Humanos , Injeções , Japão , Camundongos , Camundongos Endogâmicos BALB C , Neoplasias Experimentais/radioterapia , Dosagem Radioterapêutica , Distribuição Tecidual , Resultado do Tratamento
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA