Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Métodos Terapêuticos e Terapias MTCI
Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Int J Mol Sci ; 22(17)2021 Aug 31.
Artigo em Inglês | MEDLINE | ID: mdl-34502362

RESUMO

Finding an effective therapeutic to prevent or cure AD has been difficult due to the complexity of the brain and limited experimental models. This study utilized unmodified and genetically modified Saccharomyces cerevisiae as model organisms to find potential natural bioactive compounds capable of reducing intracellular amyloid beta 42 (Aß42) and associated oxidative damage. Eleven natural bioactive compounds including mangiferin, quercetin, rutin, resveratrol, epigallocatechin gallate (EGCG), urolithin A, oleuropein, rosmarinic acid, salvianolic acid B, baicalein and trans-chalcone were screened for their ability to reduce intracellular green fluorescent protein tagged Aß42 (GFP-Aß42) levels. The two most effective compounds from the screens were combined in varying concentrations of each to study the combined capacity to reduce GFP-Aß42. The most effective combinations were examined for their effect on growth rate, turnover of native Aß42 and reactive oxygen species (ROS). The bioactive compounds except mangiferin and urolithin A significantly reduced intracellular GFP-Aß42 levels. Baicalein and trans-chalcone were the most effective compounds among those that were screened. The combination of baicalein and trans-chalcone synergistically reduced GFP-Aß42 levels. A combination of 15 µM trans-chalcone and 8 µM baicalein was found to be the most synergistic combination. The combination of the two compounds significantly reduced ROS and Aß42 levels in yeast cells expressing native Aß42 without affecting growth of the cells. These findings suggest that the combination of baicalein and trans-chalcone could be a promising multifactorial therapeutic strategy to cure or prevent AD. However, further studies are recommended to look for similar cytoprotective activity in humans and to find an optimal dosage.


Assuntos
Doença de Alzheimer/metabolismo , Chalcona/farmacologia , Flavanonas/farmacologia , Doença de Alzheimer/tratamento farmacológico , Doença de Alzheimer/fisiopatologia , Peptídeos beta-Amiloides/efeitos dos fármacos , Peptídeos beta-Amiloides/metabolismo , Chalcona/metabolismo , Avaliação Pré-Clínica de Medicamentos/métodos , Flavanonas/metabolismo , Humanos , Modelos Biológicos , Estresse Oxidativo/efeitos dos fármacos , Estresse Oxidativo/fisiologia , Fragmentos de Peptídeos/efeitos dos fármacos , Fragmentos de Peptídeos/metabolismo , Substâncias Protetoras/farmacologia , Espécies Reativas de Oxigênio/metabolismo , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo
2.
Int J Mol Sci ; 20(20)2019 Oct 14.
Artigo em Inglês | MEDLINE | ID: mdl-31615073

RESUMO

Ageing is an inevitable fundamental process for people and is their greatest risk factor for neurodegenerative disease. The ageing processes bring changes in cells that can drive the organisms to experience loss of nutrient sensing, disrupted cellular functions, increased oxidative stress, loss of cellular homeostasis, genomic instability, accumulation of misfolded protein, impaired cellular defenses and telomere shortening. Perturbation of these vital cellular processes in neuronal cells can lead to life threatening neurological disorders like Alzheimer's Disease, Parkinson's Disease, Huntington's Disease, Lewy body dementia, etc. Alzheimer's Disease is the most frequent cause of deaths in the elderly population. Various therapeutic molecules have been designed to overcome the social, economic and health care burden caused by Alzheimer's Disease. Almost all the chemical compounds in clinical practice have been found to treat symptoms only limiting them to palliative care. The reason behind such imperfect drugs may result from the inefficiencies of the current drugs to target the cause of the disease. Here, we review the potential role of antioxidant polyphenolic compounds that could possibly be the most effective preventative strategy against Alzheimer's Disease.


Assuntos
Doença de Alzheimer/dietoterapia , Antioxidantes/uso terapêutico , Doença de Huntington/dietoterapia , Doença de Parkinson/dietoterapia , Polifenóis/uso terapêutico , Idoso , Doença de Alzheimer/metabolismo , Antioxidantes/metabolismo , Homeostase , Humanos , Doença de Huntington/metabolismo , Neurônios/efeitos dos fármacos , Estresse Oxidativo/efeitos dos fármacos , Doença de Parkinson/metabolismo , Polifenóis/metabolismo , Espécies Reativas de Oxigênio/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA