Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Chemosphere ; 305: 135390, 2022 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-35728665

RESUMO

Indiscriminate usage, disposal and recalcitrance of petroleum-based plastics have led to its accumulation leaving a negative impact on the environment. Bioplastics, particularly microbial bioplastics serve as an ecologically sustainable solution to nullify the negative impacts of plastics. Microbial production of biopolymers like Polyhydroxyalkanoates, Polyhydroxybutyrates and Polylactic acid using renewable feedstocks as well as industrial wastes have gained momentum in the recent years. The current study outlays types of bioplastics, their microbial sources and applications in various fields. Scientific evidence on bioplastics has suggested a unique range of applications such as industrial, agricultural and medical applications. Though diverse microorganisms such as Alcaligenes latus, Burkholderia sacchari, Micrococcus species, Lactobacillus pentosus, Bacillus sp., Pseudomonas sp., Klebsiella sp., Rhizobium sp., Enterobacter sp., Escherichia sp., Azototobacter sp., Protomonas sp., Cupriavidus sp., Halomonas sp., Saccharomyces sp., Kluyveromyces sp., and Ralstonia sp. are known to produce bioplastics, the industrial production of bioplastics is still challenging. Thus this paper also provides deep insights on the advancements made to maximise production of bioplastics using different approaches such as metabolic engineering, rDNA technologies and multitude of cultivation strategies. Finally, the constraints to microbial bioplastic production and the future directions of research are briefed. Hence the present review emphasizes on the importance of using bioplastics as a sustainable alternative to petroleum based plastic products to diminish environmental pollution.


Assuntos
Petróleo , Poli-Hidroxialcanoatos , Biodegradação Ambiental , Biopolímeros , Plásticos/metabolismo
2.
Arch Microbiol ; 204(5): 258, 2022 Apr 13.
Artigo em Inglês | MEDLINE | ID: mdl-35419707

RESUMO

Plastic production and consumption are on the rise due to their variety of uses. Plastics often accumulate in the environment and pose a risk due to the lack of a viable strategy for their safe disposal. Even prohibiting plastic covers does not solve the problems of plastic waste generation. Plastics are degraded by various microbes, although at a very slow rate. In addition, efforts to enhance plastic degradation efficiency by microbes are rarely addressed. This paper describes the biodegradation of both petroleum-based and bio-based plastics, as well as studies on plastic biodegradation in both the Indian and global scenarios. This paper also discusses the biochemical and molecular aspects of plastic biodegradation, which are essential since they disclose more about how bacteria break down plastics. We also shed light on initiatives to boost biodegradation rates using various strategies in this article. Understanding the enzymes and genes involved in biodegradation would also help researchers figure out how to use them to enhance microorganism's ability to degrade plastic.


Assuntos
Petróleo , Plásticos , Bactérias/genética , Bactérias/metabolismo , Biodegradação Ambiental , Petróleo/metabolismo , Plásticos/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA