Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Environ Toxicol Pharmacol ; 75: 103323, 2020 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-31935550

RESUMO

BACKGROUND: Exposure to arsenic has been reported to affect the nervous system in a number of ways. Various epidemiological studies suggest cognitive impairment in subjects following exposure to environmental arsenic. The goal of the present study was to determine if supplementation of exogenous α-lipoic acid (ALA) could ameliorate sodium arsenite (NaAsO2) induced adverse effects on learning and memory and synaptic connectivity in rat hippocampus. METHODS: Accordingly, NaAsO2 alone (1.5/2.0 mg/kg bw) or NaAsO2 along with ALA (70 mg/kg bw) was administered by intraperitoneal (i.p.) route from postnatal day (PND) 4-17 to Wistar rat pups (experimental groups) and the Control groups received either distilled water or no treatment at all. After carrying out Elevated Plus Maze (EPM) and Morris Water Maze (MWM) test, the fresh brain tissues were collected on PND 18 and processed for Golgi Cox staining. RESULTS: Observations of MWM test revealed impaired learning and memory in iAs alone treated animals as against those co-exposed to iAs and ALA. In Golgi stained hippocampal sections of iAs alone treated animals, decreased dendritic arborization and reduced number of spines in pyramidal neurons (CA1) and granule cells (DG) was observed whereas neuronal morphology was preserved in the controls and ALA supplemented groups CONCLUSIONS: These observations are suggestive of beneficial effects of ALA on iAs induced effects on learning and memory as well as on hippocampal neuronal morphology.


Assuntos
Arsenitos/toxicidade , Substâncias Protetoras/farmacologia , Compostos de Sódio/toxicidade , Ácido Tióctico/farmacologia , Animais , Hipocampo/efeitos dos fármacos , Plasticidade Neuronal , Ratos Wistar , Memória Espacial
2.
J Ayurveda Integr Med ; 11(4): 455-463, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-30635247

RESUMO

BACKGROUND: Arsenic is an environmental contaminant of global concern. Consumption of ground water contaminated with inorganic arsenic (iAs) continues to be the major source of its exposure. The developing nervous system is especially vulnerable to environmental insults due to its higher rate of oxygen consumption and provision of weaker antioxidant (AOX) machinery. OBJECTIVE: Since oxidative stress has been reported as one of the major factors underlying iAs induced toxicity, the aim of the present study is to study the effect of two AOXs i.e., Alpha Lipoic Acid (ALA) and Curcumin (Cur) in developing cerebellum of rats exposed to arsenic during postnatal period. MATERIALS AND METHODS: The study was carried out on mother reared neonatal rat pups grouped as normal (Ia) and sham (vehicle) controls (Ib,c,d), while the experimental groups IIa/ IIb received sodium arsenite (NaAsO2) [(1.5/2.5 mg/kg body weight (bw)] alone or along with ALA (70 mg/kg bw)- IIIa/ IIIb or along with Cur (150 mg/kg bw)- IVa/ IVb. Behavioural, biochemical and immunohistochemical procedures were carried out to understand the underlying mechanisms. RESULTS: The observations indicated deficits in locomotor function, accumulation of iAs, increased levels of oxidative stress markers along with downregulation of the expression of proteins closely associated with synaptic functioning (Synaptophysin and Postsynaptic density protein95) in the cerebellum of iAs treated animals. Substantial recovery in all these parameters was observed in AOX co-treated groups. CONCLUSION: Our results support the potential of ALA and Cur in amelioration of iAs induced developmental neurotoxicity. ALA and Cur can be proposed as dietary adjuvants amongst populations inhabiting areas with high iAs contamination as a safe and cost effective antidotes.

3.
Brain Res ; 1690: 23-30, 2018 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-29630858

RESUMO

Optimal cytoplasmic calcium (Ca2+) levels have been associated with adequate cell functioning and neuronal survival. Altered intracellular Ca2+ levels following impaired Ca2+ homeostasis could induce neuronal degeneration or even cell death. There are reports of arsenite induced oxidative stress and the associated disturbances in intracellular calcium homeostasis. The present study focused on determining the strategies that would modulate tissue redox status and calcium binding protein (CaBP) (Calbindin D28k-CB) expression affected adversely by sodium arsenite (NaAsO2) exposure (postnatal) of rat pups. NaAsO2 alone or along with antioxidants (AOXs) (alpha lipoic acid or curcumin) was administered by intraperitoneal (i.p.) route from postnatal day (PND) 1-21 (covering rapid brain growth period - RBGP) to experimental groups and animals receiving sterile water by the same route served as the controls. At the end of the experimental period, the animals were subjected to euthanasia and the cerebellar tissue obtained therefrom was processed for immunohistochemical localization and western blot analysis of CB protein. CB was diffusely expressed in cell body as well as dendritic processes of Purkinje cells (PCs) along the PC Layer (PCL) in all cerebellar folia of the control and the experimental animals. The multilayered pattern of CB +ve cells along with their downregulated expression and low packing density was significantly evident in the arsenic (iAs) alone exposed group as against the controls and AOX supplemented groups. The observations are suggestive of AOX induced restoration of CaBP expression in rat cerebellum following early postnatal exposure to NaAsO2.


Assuntos
Antioxidantes/farmacologia , Arsenitos/efeitos adversos , Calbindinas/metabolismo , Fármacos Neuroprotetores/farmacologia , Células de Purkinje/efeitos dos fármacos , Compostos de Sódio/efeitos adversos , Animais , Animais Recém-Nascidos , Tamanho Celular/efeitos dos fármacos , Curcumina/farmacologia , Estresse Oxidativo/efeitos dos fármacos , Estresse Oxidativo/fisiologia , Células de Purkinje/metabolismo , Células de Purkinje/patologia , Distribuição Aleatória , Ratos Wistar , Ácido Tióctico/farmacologia , Regulação para Cima/efeitos dos fármacos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA