Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
J Sci Food Agric ; 104(6): 3175-3184, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38105390

RESUMO

Bakery products have gained prominence in modern diets due to their convenience and accessibility, often serving as staple meals across diverse regions. However, the fats used in these products are rich in saturated fatty acids and often comprise trans fatty acids, which are considered as a major biomarker for non-communicable diseases like cardiovascular disorders, obesity and diabetes. Additionally, these fats lack the essential omega-3 fatty acids, which are widely known for their therapeutic benefits. They play a major role in lowering the risk of cardiovascular diseases, cancer and diabetes. Thus, there is need for incorporating these essential fatty acids into bakery fats. Nevertheless, fortifying food products with polyunsaturated fatty acids (PUFAs) poses several challenges due to their high susceptibility to oxidation. This oxidative deterioration leads to not only the formation of undesirable flavors, but also a loss of nutritional value in the final products. This review focuses on the development of healthier trans-fat-free bakery fat enriched with omega-3 fatty acids and its effect on the physicochemical, functional, sensory and nutritional properties of bakery fats and products. Further, the role of various technologies like physical blending, enzymatic interesterification and encapsulation to improve the stability of PUFA-rich bakery fat is discussed, where microencapsulation emerged as a novel and effective technology to enhance the stability and shelf life. By preventing deteriorative changes, microencapsulation ensures that the nutritional, physicochemical and sensory properties of food products remain intact. Novel modification methods like interesterification and microencapsulation used for developing PUFA-rich bakery fats have a potential to address the health risks occurring due to consumption of bakery fat having higher amount of saturated and trans fatty acids. © 2023 Society of Chemical Industry.


Assuntos
Doenças Cardiovasculares , Diabetes Mellitus , Ácidos Graxos Ômega-3 , Ácidos Graxos trans , Humanos , Alimentos , Ácidos Graxos/química , Doenças Cardiovasculares/prevenção & controle , Diabetes Mellitus/induzido quimicamente , Gorduras na Dieta/efeitos adversos
2.
J Oleo Sci ; 71(12): 1697-1709, 2022 Dec 03.
Artigo em Inglês | MEDLINE | ID: mdl-36336342

RESUMO

In recent years, scientists and technologists have become increasingly interested in producing modified lipids with enhanced nutritional and functional properties. The application and functional properties of fats and oil depend on the composition and structure of triacylglycerols (TAG). As a result, lipid TAG changes can be used to synthesize tailored lipids with a broader range of applications. However, no natural edible oil is available with appropriate dietary and functional properties to meet the human recommended dietary allowances (RDA). On the other hand, the arising health concern is the transfat consumption produced during the chemical modification of vegetable oil through the partial hydrogenation process. Therefore, innovative technologies are shifting toward modifying fat and oil to improve their functionality. Enzymatic interesterification (EIE) is one of the emerging and novel technology to modify the technological traits of naturally available edible oil. It helps in modifying physicochemical, functional, oxidative, and nutritional characteristics of fats and oil due to the rearrangement of the fatty acid positions in the glycerol backbone after interesterification. Enzymatic interesterification utilizes lipase as a biocatalyst with specificity and selectivity to produce desired lipids. Alternation in the molecular structure of triacylglycerol results in changes in melting/dropping point, thermal properties, crystallization behavior, solid fat content, and oxidative stability. Because of its high acyl exchange reaction efficiency, simple reaction process, flexibility, eco-friendly, and generation of fewer by-products, (EIE) is gaining more attention as a substitute lipid modification approach. This review paper discusses the uses of EIE in developing modified fat with desirable physicochemical and nutritional properties. EIE is one of the potential techniques to modify vegetable oil's physicochemical, functional, and nutritional characteristics without producing any undesirable reaction products. EIE produces different modified lipids such as trans fat-free margarine, plastic fat, bakery, confectionery fat, therapeutic oil, infant food, cocoa butter substitute, and equivalent.


Assuntos
Óleos de Plantas , Ácidos Graxos trans , Humanos , Óleos de Plantas/química , Esterificação , Margarina , Triglicerídeos/química , Ácidos Graxos trans/química , Ácidos Graxos/química , Gorduras/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA