Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Free Radic Biol Med ; 208: 186-193, 2023 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-37553026

RESUMO

Coronavirus disease-19 (COVID-19) can induce severe inflammation of the lungs and respiratory system. Severe COVID-19 is frequently associated with hyper inflammation and hyper-ferritinemia. High iron levels are known to trigger pro-inflammatory effects. Cumulative iron loading negatively impacts on a patients innate immune effector functions and increases the risk for infection related complications. Prognosis of severe acute respiratory SARS-CoV-2 patients may be impacted by iron excess. Iron is an essential co-factor for numerous essential cellular enzymes and vital cellular operations. Viruses hijack cells in order to replicate, and efficient replication requires an iron-replete host. Utilizing iron loaded cells in culture we evaluated their susceptibility to infection by pseudovirus expressing the SARS-CoV-2 spike protein and resultant cellular inflammatory response. We observed that, high levels of iron enhanced host cell ACE2 receptor expression contributing to higher infectivity of pseudovirus. In vitro Cellular iron overload also synergistically enhanced the levels of; reactive oxygen species, reactive nitrogen species, pro-inflammatory cytokines (IL-1ß, IL-6, IL-8 & TNF-α) and chemokine (CXCL-1&CCL-4) production in response to inflammatory stimulation of cells with spike protein. These results were confirmed using an in vivo mouse model. In future, limiting iron levels may be a promising adjuvant strategy in treating viral infection.


Assuntos
COVID-19 , Sobrecarga de Ferro , Humanos , Animais , Camundongos , SARS-CoV-2 , Inflamação , Ferro
2.
FASEB J ; 33(4): 5626-5640, 2019 04.
Artigo em Inglês | MEDLINE | ID: mdl-30640524

RESUMO

During physiologic stresses, like micronutrient starvation, infection, and cancer, the cytosolic moonlighting protein glyceraldehyde-3-phosphate dehydrogenase (GAPDH) is trafficked to the plasma membrane (PM) and extracellular milieu (ECM). Our work demonstrates that GAPDH mobilized to the PM, and the ECM does not utilize the classic endoplasmic reticulum-Golgi route of secretion; instead, it is first selectively translocated into early and late endosomes from the cytosol via microautophagy. GAPDH recruited to this common entry point is subsequently delivered into multivesicular bodies, leading to its membrane trafficking through secretion via exosomes and secretory lysosomes. We present evidence that both pathways of GAPDH membrane trafficking are up-regulated upon iron starvation, potentially by mobilization of intracellular calcium. These pathways also play a role in clearance of misfolded intracellular polypeptide aggregates. Our findings suggest that cells build in redundancy for vital cellular pathways to maintain micronutrient homeostasis and prevent buildup of toxic intracellular misfolded protein refuse.-Chauhan, A. S., Kumar, M., Chaudhary, S., Dhiman, A., Patidar, A., Jakhar, P., Jaswal, P., Sharma, K., Sheokand, N., Malhotra, H., Raje, C. I., Raje. M. Trafficking of a multifunctional protein by endosomal microautophagy: linking two independent unconventional secretory pathways.


Assuntos
Endossomos/metabolismo , Microautofagia/fisiologia , Transporte Proteico/fisiologia , Via Secretória/fisiologia , Animais , Autofagia/fisiologia , Linhagem Celular , Membrana Celular/metabolismo , Movimento Celular/fisiologia , Citosol/metabolismo , Retículo Endoplasmático/metabolismo , Exossomos/metabolismo , Gliceraldeído-3-Fosfato Desidrogenases/metabolismo , Complexo de Golgi/metabolismo , Lisossomos/metabolismo , Camundongos , Corpos Multivesiculares/metabolismo , Regulação para Cima/fisiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA