Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Medicinas Complementares
Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Plant Physiol Biochem ; 204: 108108, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37864926

RESUMO

Selenium (Se) fertilizer has been recently used to reduce cadmium (Cd) accumulation in plant. A pot culture was performed to analyze Cd uptake, translocation, and distribution in wheat plants during the reproductive growth period in a Cd-contaminated soil after selenate was applied to the soil, and a hydroponic culture was carried out to investigate the effects of selenate application on Cd2+ influx, subcellular Cd distribution, and Cd accumulation in wheat seedlings. Results showed that selenate application had no significant effect on DTPA-Cd and Cd fraction in soil. The application of selenate greatly inhibited the whole-plant Cd absorption by 14%-23%. In addition, selenate prompted the retention of Cd in root by increasing the Cd distribution in the vacuole, which reduced the root-to-shoot Cd translocation by 18%-53%. The application of selenate increased the Cd concentration in nodes, inhibited Cd remobilization from nutritive organs to grain, and ultimately reduced Cd accumulation in wheat grain. Further, heading to grain filling was the key growth stage for exogenous selenate to regulate grain Cd accumulation. In summary, soil selenate application is an effective method to reduce grain Cd concentration in wheat, which provided scientific basis for remediation of Cd-contaminated soil.


Assuntos
Selênio , Poluentes do Solo , Ácido Selênico/farmacologia , Cádmio/análise , Triticum , Selênio/farmacologia , Solo , Grão Comestível/química
2.
Chemosphere ; 340: 139888, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37604343

RESUMO

Selenium (Se) can counteract cadmium (Cd) toxicity in wheat, but the molecular mechanism of different Se forms reducing Cd uptake and accumulation in wheat seedlings remain unclear. Here, a hydroponic experiment was conducted to investigate the effects of three Se forms (selenite (Se(IV)), selenate (Se(VI)) and seleno-L-methionine (SeMet)) on Cd2+ influx, Cd subcellular distribution, and Cd accumulation in wheat seedlings, and the underlying molecular mechanisms were investigated through transcriptome analysis. Consequently, Se(IV) and Se(VI) addition significantly reduced root Cd concentration by 74.3% and 80.8%, respectively, and all Se treatments significantly decreased shoot Cd concentration by approximately 34.2%-74.9%, with Se(IV) addition having the most pronounced reducing effect. Transcriptome analysis showed the reduction of Cd accumulation after Se(IV) addition was mainly due to the downregulation of Cd uptake genes. The inhibition of Cd accumulation after Se(VI) addition was not only associated with the downregulation of Cd uptake genes, but also related to the sequestration of Cd in vacuole. For SeMet addition, the reduction of Cd accumulation was mainly related to the sequestration of Cd in vacuole as GSH-Cd. The above findings provide novel insights to understand the effects of different forms of Se on Cd uptake and accumulation and tolerance in wheat.


Assuntos
Intoxicação por Cádmio , Selênio , Selênio/farmacologia , Cádmio/toxicidade , Triticum/genética , Plântula/genética , Perfilação da Expressão Gênica , Metionina , Racemetionina
3.
Plant Physiol Biochem ; 197: 107657, 2023 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-36989987

RESUMO

In this study, a soil culture and a hydroponic experiment were conducted to assess the toxicology effects of copper oxide nanoparticles (CuO NPs) on soil microbial community structure and the growth of bok choy. Results showed CuO NPs had an inhibitory effect on soil microbial abundance, diversity, and activity, as well as the bok choy seedling growth, whereas CuO NPs at low concentrations did not significantly affect the soil microbial biomass or plant growth. In soil, CuO NPs at high dose (80 mg kg-1) significantly reduced the indexes of Simpson diversity, Shannon-Wiener diversity and Pielou evenness by 3.7%, 4.9% and 4.5%, respectively. In addition, CuO NPs at 20 and 80 mg kg-1 treatment significantly reduced soil enzymes (urease, alkaline phosphatase, dehydrogenase, and catalase) activities by 25.5%-58.9%. Further, CuO NPs at 20 mg L-1 significantly inhibited the growth of plant root by 33.8%, and catalase (CAT) activity by 17.9% in bok choy seedlings. The present study can provide a basis for a comprehensive evaluation of the toxicity effect of CuO NPs on soil microorganisms and phytotoxicity to bok choy seedlings.


Assuntos
Brassica , Nanopartículas Metálicas , Microbiota , Plântula , Antioxidantes/farmacologia , Catalase , Cobre/toxicidade , Ácidos Graxos/farmacologia , Fosfolipídeos , Plântula/microbiologia , Solo/química , Brassica/microbiologia
4.
Food Chem ; 400: 134077, 2023 Jan 30.
Artigo em Inglês | MEDLINE | ID: mdl-36084597

RESUMO

Given the wide-spread consumption of wheat, the production of selenium (Se)-enriched wheat grain may be an effective method to increase the dietary Se intake in many Se-deficient areas. Herein, we biofortified wheat (Triticum aestivum L.) via the foliar spraying of selenate or selenite at low or high rate, and investigated the resulting Se distribution in different wheat parts and the crucial parts involved in grain Se accumulation. Results showed that Se concentration in grain after selenite spraying was 1.5 times higher than that of selenate. Grain Se accumulation was largely affected by leaves Se and the transfer of Se from node1 to internode1. Furthermore, the main speciation of Se in wheat grain was the organic Se. In addition, the optimal dosage was 15 g ha-1. In summary, foliar spraying 15 g ha-1 of Se is an effective and safe agronomic biofortification practice.


Assuntos
Ácido Selenioso , Selênio , Grão Comestível , Ácido Selênico , Triticum
5.
Artigo em Inglês | MEDLINE | ID: mdl-32455743

RESUMO

This study investigates how arsenic (As) uptake, accumulation, and migration responds to selenium (Se) foliar application (0-5.0 mg × kg-1). Rice varieties known to accumulate low (DOURADOAGULHA) and high (SINALOAA68) concentrations of arsenic were chosen to grow on soil with different As concentrations (20.1, 65.2, 83.9 mg × kg-1). The results showed that Se of 1.0 mg × L-1 significantly alleviated As stress on upland rice grown on the As-contaminated soil. Under light (65.2 mg × kg-1) and moderate (83.9 mg × kg-1) As concentration treatments, the biomass of upland rice was increased by 23.15% and 36.46% for DOURADOAGULHA, and 46.3% and 54.9% for SINALOAA68. However, the high Se dose (5.0 mg × kg-1) had no significant effect on biomass and heights of upland rice compared to plants where no Se was added. Se significantly decreased As contents in stems and leaves and had different effects on As transfer coefficients for the two rice varieties: when grown on soil with low and moderate As concentrations, Se could reduce the transfer coefficient from stems to leaves, but when grown on the high As soils, this was not the case. The chlorophyll content in plants grown in soil with the moderate concentration of As could be improved by 27.4%-55.3% compared with no Se treatment. Under different As stress, the Se foliar application increased the net photosynthesis, stomatal conductance, and transpiration rate, which meant that Se could enhance the photosynthesis of rice. The intercellular CO2 concentration variation implied that the stomatal or non-stomatal limitations could both occur for different rice varieties under different Se application doses. In conclusion, under moderate As stress, foliar application of Se (1.0 mg × L-1) is recommend to overcome plant damage and As accumulation.


Assuntos
Arsênio , Oryza , Selênio , Poluentes do Solo , Arsênio/farmacocinética , Cádmio , Fotossíntese , Ácido Selenioso , Selênio/farmacologia , Poluentes do Solo/farmacocinética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA