Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 56
Filtrar
1.
Nat Commun ; 9(1): 4194, 2018 10 10.
Artigo em Inglês | MEDLINE | ID: mdl-30305620

RESUMO

Puberty is regulated by epigenetic mechanisms and is highly sensitive to metabolic and nutritional cues. However, the epigenetic pathways mediating the effects of nutrition and obesity on pubertal timing are unknown. Here, we identify Sirtuin 1 (SIRT1), a fuel-sensing deacetylase, as a molecule that restrains female puberty via epigenetic repression of the puberty-activating gene, Kiss1. SIRT1 is expressed in hypothalamic Kiss1 neurons and suppresses Kiss1 expression. SIRT1 interacts with the Polycomb silencing complex to decrease Kiss1 promoter activity. As puberty approaches, SIRT1 is evicted from the Kiss1 promoter facilitating a repressive-to-permissive switch in chromatin landscape. Early-onset overnutrition accelerates these changes, enhances Kiss1 expression and advances puberty. In contrast, undernutrition raises SIRT1 levels, protracts Kiss1 repression and delays puberty. This delay is mimicked by central pharmacological activation of SIRT1 or SIRT1 overexpression, achieved via transgenesis or virogenetic targeting to the ARC. Our results identify SIRT1-mediated inhibition of Kiss1 as key epigenetic mechanism by which nutritional cues and obesity influence mammalian puberty.


Assuntos
Epigênese Genética , Kisspeptinas/genética , Fenômenos Fisiológicos da Nutrição , Obesidade/metabolismo , Maturidade Sexual , Sirtuína 1/metabolismo , Animais , Núcleo Arqueado do Hipotálamo/metabolismo , Cromatina/metabolismo , Feminino , Histonas/metabolismo , Hipotálamo/metabolismo , Kisspeptinas/metabolismo , Camundongos Transgênicos , Modelos Biológicos , Neurônios/metabolismo , Estado Nutricional , Complexo Repressor Polycomb 2/metabolismo , Regiões Promotoras Genéticas , Ratos , Ratos Wistar , Fatores de Tempo
2.
Curr Mol Med ; 14(1): 3-21, 2014 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-24236459

RESUMO

Optimal cellular function and therefore organism's survival is determined by the sensitive and accurate convergence of energy and nutrient abundance to cell growth and division. Among other factors, this integration is coupled by the target of rapamycin (TOR) pathway, which is able to sense nutrient, energy and oxygen availability and also growth factor signaling. Indeed, TOR signaling regulates cell energy homeostasis by coordinating anabolic and catabolic processes for survival. TOR, named mTOR in mammals, is a conserved serine/threonine kinase that exists in two different complexes, mTORC1 and mTORC2. Recently, studies are suggesting that alterations of those complexes promote disease and disrupted phenotypes, such as aging, obesity and related disorders and even cancer. The evidences linking mTOR to energy and metabolic homeostasis included the following. At central level mTOR regulates food intake and body weight being involved in the mechanism by which signals such as leptin and ghrelin exert its effects. At peripheral level it influences adipogenesis and lipogenesis in different tissues including the liver. Noteworthy chronic nutritional activation of mTOR signaling has been implicated in the development of beta cell mass expansion and on insulin resistance. Understanding of mTOR and other molecular switches, such as AMP-activated protein kinase (AMPK), as well as their interrelationship is crucial to know how organisms maintain optimal homeostasis. This review summarizes the role of hypothalamic TOR complex in cellular energy sensing, evidenced in the last years, focusing on the metabolic pathways where it is involved and the importance of this metabolic sensor in cellular and whole body energy management. Understanding the exact role of hypothalamic mTOR may provide new cues for therapeutic intervention in diseases.


Assuntos
Hipotálamo/metabolismo , Serina-Treonina Quinases TOR/metabolismo , Animais , Metabolismo Energético , Hormônios/metabolismo , Hormônios/farmacologia , Humanos , Hipotálamo/efeitos dos fármacos , Alvo Mecanístico do Complexo 1 de Rapamicina , Alvo Mecanístico do Complexo 2 de Rapamicina , Modelos Biológicos , Complexos Multiproteicos/metabolismo , Puberdade/genética , Puberdade/metabolismo , Transdução de Sinais/efeitos dos fármacos , Serina-Treonina Quinases TOR/genética
3.
Horm Metab Res ; 45(13): 960-6, 2013 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-23950036

RESUMO

The sirtuins are a family of highly conserved nicotine adenine dinucleotide (NAD+)-dependent deacetylases that act as cellular sensors to detect energy availability and regulate metabolic processes. Sirtuin 1 (SIRT1) is one of the family members that is activated in response to caloric restriction, acting on multiple targets in a wide range of tissues. Recent studies have shown that SIRT1 controls glucose and lipid metabolism in both liver and muscle, promotes fat mobilization, stimulates remodeling of white to brown fat, controls insulin secretion in the pancreas, and senses nutrient availability in the hypothalamus. SIRT1 is located in several areas of the brain and its central metabolic actions have attracted much attention in the last decade. In this short review, we summarize the main actions and molecular pathways triggered by SIRT1 that control feeding behavior, energy expenditure, glucose metabolism, and insulin sensitivity, with an emphasis on the emerging role of SIRT1 in the brain.


Assuntos
Metabolismo Energético/fisiologia , Comportamento Alimentar/fisiologia , Glucose/metabolismo , Hipotálamo/metabolismo , Proteínas do Tecido Nervoso/metabolismo , Sirtuína 1/metabolismo , Animais , Humanos
4.
Horm Metab Res ; 45(13): 935-44, 2013 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-23913119

RESUMO

The prevalence of overweight and obesity in most developed countries has markedly increased during the last decades. In addition to genetic, hormonal, and metabolic influences, environmental factors like fetal and neonatal nutrition play key roles in the development of obesity. Interestingly, overweight during critical developmental periods of fetal and/or neonatal life has been demonstrated to increase the risk of obesity throughout juvenile life into adulthood. In spite of this evidence, the specific mechanisms underlying this fetal/neonatal programming are not perfectly understood. However, it is clear that circulating hormones such as insulin and leptin play a critical role in the development and programming of hypothalamic circuits regulating energy balance. Here, we review what is currently known about the impact of perinatal malnutrition on the mechanisms regulating body weight homeostasis. Understanding these molecular mechanisms may provide new targets for the treatment of obesity.


Assuntos
Metabolismo Energético , Hipotálamo/metabolismo , Hipotálamo/fisiopatologia , Transtornos da Nutrição do Lactente/metabolismo , Transtornos da Nutrição do Lactente/fisiopatologia , Obesidade/metabolismo , Obesidade/fisiopatologia , Adulto , Animais , Feminino , Humanos , Hipotálamo/patologia , Lactente , Transtornos da Nutrição do Lactente/complicações , Transtornos da Nutrição do Lactente/patologia , Recém-Nascido , Masculino , Obesidade/etiologia , Obesidade/patologia
5.
Endocrinology ; 154(2): 942-55, 2013 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-23291449

RESUMO

Lin28 and Lin28b are related RNA-binding proteins that inhibit the maturation of miRNAs of the let-7 family and participate in the control of cellular stemness and early embryonic development. Considerable interest has arisen recently concerning other physiological roles of the Lin28/let-7 axis, including its potential involvement in the control of puberty, as suggested by genome-wide association studies and functional genomics. We report herein the expression profiles of Lin28 and let-7 members in the rat hypothalamus during postnatal maturation and in selected models of altered puberty. The expression patterns of c-Myc (upstream positive regulator of Lin28), mir-145 (negative regulator of c-Myc), and mir-132 and mir-9 (putative miRNA repressors of Lin28, predicted by bioinformatic algorithms) were also explored. In male and female rats, Lin28, Lin28b, and c-Myc mRNAs displayed very high hypothalamic expression during the neonatal period, markedly decreased during the infantile-to-juvenile transition and reached minimal levels before/around puberty. A similar puberty-related decline was observed for Lin28b in monkey hypothalamus but not in the rat cortex, suggesting species conservation and tissue specificity. Conversely, let-7a, let-7b, mir-132, and mir-145, but not mir-9, showed opposite expression profiles. Perturbation of brain sex differentiation and puberty, by neonatal treatment with estrogen or androgen, altered the expression ratios of Lin28/let-7 at the time of puberty. Changes in the c-Myc/Lin28b/let-7 pathway were also detected in models of delayed puberty linked to early photoperiod manipulation and, to a lesser extent, postnatal underfeeding or chronic subnutrition. Altogether, our data are the first to document dramatic changes in the expression of the Lin28/let-7 axis in the rat hypothalamus during the postnatal maturation and after different manipulations that disturb puberty, thus suggesting the potential involvement of developmental changes in hypothalamic Lin28/let-7 expression in the mechanisms permitting/leading to puberty onset.


Assuntos
Envelhecimento/genética , Encéfalo/crescimento & desenvolvimento , MicroRNAs/metabolismo , Proteínas de Ligação a RNA/biossíntese , Animais , Células-Tronco Embrionárias/citologia , Feminino , Hipotálamo/crescimento & desenvolvimento , Hipotálamo/metabolismo , Masculino , MicroRNAs/biossíntese , Proteínas Proto-Oncogênicas c-myc/biossíntese , Puberdade/efeitos dos fármacos , Ratos , Ratos Wistar , Distribuição Tecidual
6.
J Neuroendocrinol ; 22(6): 543-56, 2010 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-20298456

RESUMO

Current evidence demonstrates that the stomach-derived hormone ghrelin, a potent growth hormone (GH) secretagogue, promotes feeding through a mechanism involving the short-term activation of hypothalamic AMP-activated protein kinase (AMPK), which in turn results in decreased hypothalamic levels of malonyl-CoA and increased carnitine palmitoyltransferase 1 (CPT1) activity. Despite this evidence, no data have been reported about the effect of chronic, central ghrelin administration on hypothalamic fatty acid metabolism. In the present study, we examined the differences in hypothalamic fatty acid metabolism in the presence and absence of GH, by using a model for the study of GH-deficiency, namely the spontaneous dwarf rat and the effect of long-term central ghrelin treatment and starvation on hypothalamic fatty acid metabolism in this animal model. Our data showed that GH-deficiency induces reductions in both de novo lipogenesis and beta-oxidation pathways in the hypothalamus. Thus, dwarf rats display reductions in fatty acid synthase (FAS) mRNA expression both in the ventromedial nucleus of the hypothalamus (VMH) and whole hypothalamus, as well as in FAS protein and activity. CPT1 activity was also reduced. In addition, in the present study, we show that chronic ghrelin treatment does not promote AMPK-induced changes in the overall fluxes of hypothalamic fatty acid metabolism in normal rats and that this effect is independent of GH status. By contrast, we demonstrated that both chronic ghrelin and fasting decreased FAS mRNA expression in the VMH of normal rats but not dwarf rats, suggesting GH status dependency. Overall, these results suggest that ghrelin plays a dual time-dependent role in modulating hypothalamic lipid metabolism. Understanding the molecular mechanism underlying the interplay between GH and ghrelin on hypothalamic lipid metabolism will allow new strategies for the design and development of suitable drugs for the treatment of GH-deficiency, obesity and its comorbidities.


Assuntos
Proteínas Quinases Ativadas por AMP/metabolismo , Grelina/fisiologia , Hormônio do Crescimento/deficiência , Hipotálamo/metabolismo , Metabolismo dos Lipídeos , Animais , Western Blotting , Hibridização In Situ , Masculino , Reação em Cadeia da Polimerase , Ratos , Ratos Endogâmicos Lew
7.
Obes Rev ; 11(3): 185-201, 2010 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-19845870

RESUMO

The central nervous system (CNS) is crucial in the regulation of energy homeostasis. Many neuroanatomical studies have shown that the white adipose tissue (WAT) is innervated by the sympathetic nervous system, which plays a critical role in adipocyte lipid metabolism. Therefore, there are currently numerous reports indicating that signals from the CNS control the amount of fat by modulating the storage or oxidation of fatty acids. Importantly, some CNS pathways regulate adipocyte metabolism independently of food intake, suggesting that some signals possess alternative mechanisms to regulate energy homeostasis. In this review, we mainly focus on how neuronal circuits within the hypothalamus, such as leptin- ghrelin-and resistin-responsive neurons, as well as melanocortins, neuropeptide Y, and the cannabinoid system exert their actions on lipid metabolism in peripheral tissues such as WAT, liver or muscle. Dissecting the complicated interactions between peripheral signals and neuronal circuits regulating lipid metabolism might open new avenues for the development of new therapies preventing and treating obesity and its associated cardiometabolic sequelae.


Assuntos
Adipócitos/metabolismo , Metabolismo Energético/fisiologia , Hipotálamo/metabolismo , Metabolismo dos Lipídeos/fisiologia , Hormônios Peptídicos/fisiologia , Tecido Adiposo Branco/metabolismo , Homeostase , Humanos , Neuropeptídeo Y/metabolismo
8.
Acta Physiol (Oxf) ; 198(3): 325-34, 2010 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-19769635

RESUMO

The secretion of growth hormone (GH) is regulated through a complex neuroendocrine control system that includes two major hypothalamic regulators, namely GH-releasing hormone (GHRH) and somatostatin (SST) that stimulate and inhibit, respectively, GH release. Classical experiments involving damage and electrical stimulation suggested that the lateral hypothalamic area (LHA) modulated the somatotropic axis, but the responsible molecular mechanisms were unclear. Evidence obtained during the last decade has demonstrated that orexins/hypocretins, a family of peptides expressed in the LHA controlling feeding and sleep, play an important regulatory role on GH, by inhibiting its secretion modulating GHRH and SST neurones. Considering that GH release is closely linked to the sleep-wake cycle and feeding state, understanding orexin/hypocretin physiology could open new therapeutic possibilities in the treatment of sleep, energy homeostasis and GH-related pathologies, such as GH deficiency.


Assuntos
Hormônio Liberador de Hormônio do Crescimento/metabolismo , Hormônio do Crescimento/metabolismo , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Neuropeptídeos/metabolismo , Neurotransmissores/metabolismo , Somatostatina/metabolismo , Animais , Peso Corporal/fisiologia , Ingestão de Alimentos/fisiologia , Metabolismo Energético/fisiologia , Homeostase/fisiologia , Humanos , Hipotálamo/metabolismo , Neurônios/metabolismo , Sistemas Neurossecretores/metabolismo , Orexinas , Hipófise/metabolismo , Sono/fisiologia , Vigília/fisiologia
9.
Endocrinology ; 150(11): 5016-26, 2009 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-19734277

RESUMO

The mammalian target of rapamycin (mTOR) is a serine/threonine kinase that operates as sensor of cellular energy status and effector for its coupling to cell growth and proliferation. At the hypothalamic arcuate nucleus, mTOR signaling has been recently proposed as transducer for leptin effects on energy homeostasis and food intake. However, whether central mTOR also participates in metabolic regulation of fertility remains unexplored. We provide herein evidence for the involvement of mTOR in the control of puberty onset and LH secretion, likely via modulation of hypothalamic expression of Kiss1. Acute activation of mTOR by l-leucine stimulated LH secretion in pubertal female rats, whereas chronic l-leucine infusion partially rescued the state of hypogonadotropism induced by food restriction. Conversely, blockade of central mTOR signaling by rapamycin caused inhibition of the gonadotropic axis at puberty, with significantly delayed vaginal opening, decreased LH and estradiol levels, and ovarian and uterine atrophy. Inactivation of mTOR also blunted the positive effects of leptin on puberty onset in food-restricted females. Yet the GnRH/LH system retained their ability to respond to ovariectomy and kisspeptin-10 after sustained blockade of mTOR, ruling out the possibility of unspecific disruption of GnRH function by rapamycin. Finally, mTOR inactivation evoked a significant decrease of Kiss1 expression at the hypothalamus, with dramatic suppression of Kiss1 mRNA levels at the arcuate nucleus. Altogether our results unveil the role of central mTOR signaling in the control of puberty onset and gonadotropin secretion, a phenomenon that involves the regulation of Kiss1 and may contribute to the functional coupling between energy balance and gonadal activation and function.


Assuntos
Regulação da Expressão Gênica no Desenvolvimento , Hipotálamo/enzimologia , Proteínas Quinases/metabolismo , Proteínas/genética , Animais , Ingestão de Alimentos , Feminino , Hipotálamo/crescimento & desenvolvimento , Hipotálamo/metabolismo , Kisspeptinas , Leucina/metabolismo , Hormônio Luteinizante/metabolismo , Proteínas Quinases/genética , Proteínas/metabolismo , Ratos , Ratos Wistar , Transdução de Sinais , Serina-Treonina Quinases TOR
10.
Endocrinology ; 150(2): 784-94, 2009 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-18845637

RESUMO

Using long-term streptozotocin (STZ)-treated male rats, we recently proposed that defective function of hypothalamic KiSS-1 system is mechanistically relevant for central hypogonadotropism of uncontrolled diabetes. However, the temporal pattern of such defects and its potential contribution to disturbed gonadotropin secretion in the diabetic female remain so far unexplored. To cover these issues, expression analyses and hormonal tests were conducted in diabetic male (1 wk after STZ; short term) and female (4 wk after STZ; long term) rats. Short-term diabetic males had lower basal testosterone levels and decreased gonadotropin responses to orchidectomy (ORX), which associated with significantly attenuated post-ORX rises of hypothalamic KiSS-1 mRNA. Yet kisspeptin administration to diabetic males was able to acutely elicit supramaximal LH and testosterone responses and normalize post-ORX gonadotropin secretion. Long-term diabetic females showed persistent anestrus and significantly decreased basal gonadotropin levels as well as blunted LH responses to ovariectomy; changes that were linked to lowering of basal and postovariectomy expression of hypothalamic KiSS-1 mRNA. Moreover, despite prevailing gonadotropin suppression, LH responses to acute kisspeptin administration were fully preserved, and even enhanced after its repeated injection, in diabetic females. In sum, our present findings further define the temporal course and mechanistic relevance of altered hypothalamic KiSS-1 system in the hypogonadotropic state of uncontrolled diabetes. Furthermore, our data provide the basis for the potential therapeutic intervention of the KiSS-1 system as adjuvant in the management of disturbed gonadotropin secretion of type 1 diabetes in the female.


Assuntos
Diabetes Mellitus Experimental/metabolismo , Diabetes Mellitus Experimental/fisiopatologia , Hipotálamo/metabolismo , Proteínas/fisiologia , Animais , Glicemia/metabolismo , Peso Corporal/fisiologia , Diabetes Mellitus Experimental/induzido quimicamente , Diabetes Mellitus Tipo 1/metabolismo , Diabetes Mellitus Tipo 1/fisiopatologia , Feminino , Hipotálamo/fisiopatologia , Kisspeptinas , Hormônio Luteinizante/metabolismo , Masculino , Orquiectomia/veterinária , Ovariectomia/veterinária , Proteínas/genética , Proteínas/metabolismo , Proteínas/farmacologia , Ratos , Ratos Wistar , Transdução de Sinais/fisiologia , Estreptozocina , Testosterona/metabolismo , Fatores de Tempo
11.
J Neuroendocrinol ; 19(9): 703-7, 2007 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-17680885

RESUMO

The hypothalamic melanocortin system plays a fundamental role in the regulation of energy homeostasis. Orexins (hypocretins) are also involved in a diverse range of physiological processes, including food intake. Previous evidence has suggested that hypothalamic orexin expression may be influenced by the central melanocortin system. Here, we studied orexin mRNA levels in pro-opiomelanocortin-deficient (Pomc(-/-)) mice, a mouse model lacking all endogenously produced melanocortin peptides. Orexin expression in the lateral hypothalamus was significantly increased in corticosterone deficient Pomc(-/-) mice. Furthermore, when circulating glucocorticoids were restored to levels within the physiological range, orexin expression remained elevated. However, i.c.v. administration of the melanocortin alpha-melanocyte-stimulating hormone (MSH) to Pomc(-/-) mice reduced orexin expression back down to wild-type levels. This was independent of the effects of alpha-MSH on food intake because elevated orexin expression persisted in Pomc(-/-) mice pairfed to alpha-MSH-treated animals. These data indicate that alpha-MSH may play a role in the regulation of orexin expression in Pomc(-/-), with an elevation in orexin levels contributing to the hyperphagia seen in these animals.


Assuntos
Hormônios/metabolismo , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Neuropeptídeos/metabolismo , alfa-MSH/metabolismo , Animais , Peso Corporal , Corticosterona/administração & dosagem , Ingestão de Alimentos , Hipotálamo/anatomia & histologia , Hipotálamo/metabolismo , Peptídeos e Proteínas de Sinalização Intracelular/genética , Masculino , Camundongos , Camundongos Knockout , Neuropeptídeos/genética , Orexinas , Pró-Opiomelanocortina/genética , Pró-Opiomelanocortina/metabolismo , RNA Mensageiro/metabolismo , alfa-MSH/administração & dosagem
12.
Int J Obes (Lond) ; 31(2): 371-7, 2007 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-16801924

RESUMO

OBJECTIVE: To study the effect of perinatal programming and overfeeding on the hypothalamic control mechanisms of food intake in adult rats. DESIGN: Neonatal programming effects on body weight, food intake, central and peripheral leptin levels, hypothalamic neuropeptides, leptin receptors and central leptin responsiveness in adult rats. MEASUREMENTS: Plasma and cerebrospinal fluid (CSF) leptin levels were analyzed using radioimmunoassay. Neuropeptide mRNA levels were analyzed using in situ hybridization. Leptin receptor mRNA levels were analyzed using reverse transcriptase-polymerase chain reaction. RESULTS: Perinatally overfed rats growing up in small litters (SL) maintain their obese and hyperleptinemic phenotype in adulthood. However, leptin levels in CSF are abnormally low considering the plasmatic hyperleptinemia. In contrast to the already reported changes in perinatally overfed juvenile rats, perinatally overfed adult rats did not show any alteration in the expression of leptin receptor isoforms and evaluated neuropeptides. Moreover, SL adult rats showed a normal sensitivity regarding the inhibitory effect of intracerebroventricular leptin administration on food intake. CONCLUSION: Perinatal overfeeding does not induce alterations in either the anorectic response to central leptin administration or expression of leptin receptors and neuropeptides in adulthood. The leptin resistance to peripheral leptin in SL adult rats may be related to impaired leptin transport across the blood-brain barrier.


Assuntos
Ingestão de Alimentos/fisiologia , Leptina/sangue , Animais , Barreira Hematoencefálica/fisiologia , Tamanho Corporal/fisiologia , Peso Corporal/fisiologia , Ingestão de Alimentos/efeitos dos fármacos , Feminino , Regulação da Expressão Gênica , Hipotálamo/metabolismo , Hibridização In Situ , Leptina/líquido cefalorraquidiano , Leptina/farmacologia , Neuropeptídeos/biossíntese , Neuropeptídeos/genética , Obesidade/sangue , Obesidade/líquido cefalorraquidiano , Obesidade/fisiopatologia , Gravidez , RNA Mensageiro/genética , Ratos , Ratos Sprague-Dawley , Receptores de Superfície Celular/biossíntese , Receptores de Superfície Celular/genética , Receptores para Leptina , Reação em Cadeia da Polimerase Via Transcriptase Reversa/métodos
13.
Endocrinology ; 148(2): 813-23, 2007 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-17110433

RESUMO

Neuromedin S (NMS), a 36 amino acid peptide structurally related to neuromedin U, was recently identified in rat brain as ligand for the G protein-coupled receptor FM4/TGR-1, also termed neuromedin U receptor type-2 (NMU2R). Central expression of NMS appears restricted to the suprachiasmatic nucleus, and NMS has been involved in the regulation of dark-light rhythms and suppression of food intake. Reproduction is known to be tightly regulated by metabolic and photoperiodic cues. Yet the potential contribution of NMS to the control of reproductive axis remains unexplored. We report herein analyses of hypothalamic expression of NMS and NMU2R genes, as well as LH responses to NMS, in different developmental and functional states of the female rat. Expression of NMS and NMU2R genes was detected at the hypothalamus along postnatal development, with significant fluctuations of their relative levels (maximum at prepubertal stage and adulthood). In adult females, hypothalamic expression of NMS (which was confined to suprachiasmatic nucleus) and NMU2R significantly varied during the estrous cycle (maximum at proestrus) and was lowered after ovariectomy and enhanced after progesterone supplementation. Central administration of NMS evoked modest LH secretory responses in pubertal and cyclic females at diestrus, whereas exaggerated LH secretory bursts were elicited by NMS at estrus and after short-term fasting. Conversely, NMS significantly decreased elevated LH concentrations of ovariectomized rats. In summary, we provide herein novel evidence for the ability of NMS to modulate LH secretion in the female rat. Moreover, hypothalamic expression of NMS and NMU2R genes appeared dependent on the functional state of the female reproductive axis. Our data are the first to disclose the potential implication of NMS in the regulation of gonadotropic axis, a function that may contribute to the integration of circadian rhythms, energy balance, and reproduction.


Assuntos
Hipotálamo/metabolismo , Hormônio Luteinizante/metabolismo , Proteínas de Membrana/metabolismo , Neuropeptídeos/fisiologia , Receptores de Neurotransmissores/metabolismo , Envelhecimento/metabolismo , Animais , Animais Recém-Nascidos , Diestro/metabolismo , Estro/metabolismo , Jejum/metabolismo , Feminino , Expressão Gênica , Hormônio Luteinizante/antagonistas & inibidores , Proteínas de Membrana/genética , Neuropeptídeos/genética , Neuropeptídeos/metabolismo , Ovariectomia , Proestro/metabolismo , Progesterona/farmacologia , Ratos , Ratos Wistar , Receptores de Neurotransmissores/genética , Maturidade Sexual , Núcleo Supraquiasmático/metabolismo , Distribuição Tecidual
14.
Endocrinology ; 147(10): 4852-62, 2006 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-16825322

RESUMO

Kisspeptins, the products of KiSS-1 gene, and their receptor, GPR54, have recently emerged as essential gatekeepers of reproduction, mainly through regulation of GnRH secretion at the hypothalamus. However, the profound hypogonadotropism linked to GPR54 inactivation is likely to mask additional functions of this system at other levels of the gonadal axis, in which expression of KiSS-1 and GPR54 has been preliminarily reported. We describe herein the expression of KiSS-1 gene and kisspeptin immunoreactivity (IR) in rat ovary and evaluate its developmental and hormonal regulation. KiSS-1 and GPR54 mRNAs were persistently detected in adult ovary along estrous cycle. Yet, contrary to GPR54, ovarian KiSS-1 levels fluctuated in a cyclic-dependent manner, with a robust increase in the afternoon of proestrus, i.e. preceding ovulation. In addition, kisspeptin-IR was observed in rat ovary, with strong signals in theca layers of growing follicles, corpora lutea, and interstitial gland, compartments in which modest GPR54-IR was also detected. Interestingly, the rise in ovarian KiSS-1 mRNA at proestrus was prevented by blockade of preovulatory gonadotropin surge and restored by replacement with human chorionic gonadotropin as superagonist of LH. In addition, immature ovaries showed low to negligible levels of KiSS-1 mRNA, which were significantly enhanced by gonadotropin priming. In summary, we present novel evidence for the developmental and hormonally regulated expression of the KiSS-1 gene, and the presence of kisspeptin-IR, in rat ovary. The ability of the LH surge to timely induce ovarian expression of KiSS-1 at the preovulatory period strongly suggests a previously unsuspected role of locally produced kisspeptin in the control of ovulation.


Assuntos
Regulação da Expressão Gênica no Desenvolvimento/fisiologia , Ovário/metabolismo , Ovulação/fisiologia , Proteínas/genética , Animais , Gonadotropina Coriônica/farmacologia , Ciclo Estral/fisiologia , Feminino , Gonadotropinas Equinas/farmacologia , Hipotálamo/fisiologia , Imuno-Histoquímica , Kisspeptinas , Hormônio Luteinizante/fisiologia , RNA/biossíntese , RNA/isolamento & purificação , Ratos , Receptores Acoplados a Proteínas G/metabolismo , Receptores de Kisspeptina-1 , Reação em Cadeia da Polimerase Via Transcriptase Reversa
15.
J Physiol ; 573(Pt 1): 237-49, 2006 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-16543265

RESUMO

The close link between reproductive function and body energy stores relies on a complex neuroendocrine network of common regulatory signals, the nature of which is yet to be fully elucidated. Recently, 26RFa was identified in amphibians and mammals as a conserved hypothalamic neuropeptide of the RFamide family, with a potent orexigenic activity. Yet, despite its proposed role as hypophysiotropic factor, the function of 26RFa in the control of pituitary gonadotropins and, hence, of the reproductive axis remains unexplored. In the present study, the effects of 26RFa on gonadotropin secretion were evaluated in the rat by a combination of in vitro and in vivo approaches. At the pituitary, 26RFa dose-dependently enhanced basal and gonadotropin-releasing hormone (GnRH)-stimulated luteinizing hormone (LH) secretion from male and cyclic female rats. This effect was mimicked by the active fragment 26RFa(20-26), as well as by the related 43RFa peptide. Moreover, expression of the genes encoding 26RFa and its putative receptor, GPR103, was demonstrated in rat pituitary throughout postnatal development. In vivo, intracerebral injection of 26RFa evoked a significant increase in serum LH levels in cyclic and ovariectomized females; this response which was also observed after central injection of 26RFa(20-26) and 43RFa peptides, as well as after systemic administration of 26RFa. Conversely, central and systemic injection of 26RFa failed to significantly modify gonadotropin secretion in adult male rats, even after repeated administration of the peptide. In summary, we present herein novel evidence for the potential role of the orexigenic peptide 26RFa in the control of the gonadotropic axis, thus suggesting its potential involvement in the joint control of energy balance and reproduction, especially in the female.


Assuntos
Gonadotropinas/metabolismo , Hipotálamo/metabolismo , Hormônio Luteinizante/metabolismo , Neuropeptídeos/genética , Neuropeptídeos/metabolismo , Sequência de Aminoácidos , Animais , Relação Dose-Resposta a Droga , Feminino , Hormônio Foliculoestimulante/metabolismo , Expressão Gênica , Hormônio Liberador de Gonadotropina/metabolismo , Hipotálamo/efeitos dos fármacos , Injeções Intraventriculares , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Masculino , Dados de Sequência Molecular , Neuropeptídeos/farmacologia , Orexinas , Hipófise/efeitos dos fármacos , Hipófise/metabolismo , RNA Mensageiro/análise , Ratos , Ratos Wistar
16.
Endocrinology ; 147(6): 2864-78, 2006 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-16527840

RESUMO

Kisspeptins, products of the KiSS-1 gene with ability to bind G protein-coupled receptor 54 (GPR54), have been recently identified as major gatekeepers of reproductive function with ability to potently activate the GnRH/LH axis. Yet, despite the diversity of functional states of the female gonadotropic axis, pharmacological characterization of this effect has been mostly conducted in pubertal animals or adult male rodents, whereas similar studies have not been thoroughly conducted in the adult female. In this work, we evaluated maximal LH and FSH secretory responses to kisspeptin-10, as well as changes in sensitivity and hypothalamic expression of KiSS-1 and GPR54 genes, in different physiological and experimental models in the adult female rat. Kisspeptin-10 (1 nmol, intracerebroventricular) was able to elicit robust LH bursts at all phases of the estrous cycle, with maximal responses at estrus; yet, in diestrus LH, responses to kisspeptin were detected at doses as low as 0.1 pmol. In contrast, high doses of kisspeptin only stimulated FSH secretion at diestrus. Removal of ovarian sex steroids did not blunt the ability of kisspeptin to further elicit stimulated LH and FSH secretion, but restoration of maximal responses required replacement with estradiol and progesterone. Finally, despite suppressed basal levels, LH and FSH secretory responses to kisspeptin were preserved in pregnant and lactating females, although the magnitude of LH bursts and the sensitivity to kisspeptin were much higher in pregnant dams. Interestingly, hypothalamic KiSS-1 gene expression significantly increased during pregnancy, whereas GPR54 mRNA levels remained unaltered. In summary, our current data document for the first time the changes in hypothalamic expression of KiSS-1 system and the gonadotropic effects (maximal responses and sensitivity) of kisspeptin in different functional states of the female reproductive axis. The present data may pose interesting implications in light of the potential therapeutic use of kisspeptin analogs in the pharmacological manipulation of the gonadotropic axis in the female.


Assuntos
Hormônio Foliculoestimulante/metabolismo , Hipotálamo/metabolismo , Hormônio Luteinizante/metabolismo , Oligopeptídeos/farmacologia , Proteínas/genética , Animais , Estro/metabolismo , Feminino , Kisspeptinas , Lactação/metabolismo , Ovariectomia , Gravidez , Ratos , Ratos Wistar , Receptores Acoplados a Proteínas G/genética , Receptores de Kisspeptina-1
17.
Endocrinology ; 147(5): 2374-82, 2006 May.
Artigo em Inglês | MEDLINE | ID: mdl-16455774

RESUMO

Ghrelin, the endogenous ligand of GH secretagogue receptor type 1a, has emerged as pleiotropic modulator of diverse biological functions, including energy homeostasis and, recently, reproduction. Although inhibitory actions of ghrelin on LH secretion and puberty onset have been reported previously, the receptor mechanisms mediating these actions, and the potential gonadotropic effects of the unacylated isoform of ghrelin (UAG), remain unclear. In this work, the effects of single and repeated administration of ghrelin or UAG on LH secretion were compared in pubertal and adult male rats. In addition, the effects of ghrelin were assessed in models of transient or persistent hypergonadotropism. Daily injection of ghrelin or UAG throughout puberty similarly decreased LH levels and partially delayed balanopreputial separation. Likewise, chronic infusion of ghrelin or UAG to adult males resulted in significant decreases in circulating LH and FSH concentrations. Moreover, acute injection of ghrelin induced a transient reduction in LH levels in freely moving males, an effect that was fully mimicked by administration of UAG. Yet in contrast to ghrelin, UAG failed to modify GH secretion. Finally, injection of ghrelin moderately, but significantly, reduced the duration of LH secretory responses to the potent gonadotropin secretagogue kisspeptin-10, whereas ghrelin infusion in a model of chronic elevation of serum gonadotropin levels (the transgenic growth retarded male rat) evoked a significant reduction of LH concentrations. Altogether our present results further substantiate the inhibitory effect of ghrelin on basal and stimulated LH secretion in a wide array of experimental conditions. Moreover, our data are the first to demonstrate the ability of UAG, originally considered an inert form of the molecule, to mimic the actions of acylated ghrelin on LH release. These observations reinforce the contention that ghrelin, as putative signal for energy insufficiency, may operate as negative modifier of male puberty and LH secretion, an effect that might be, at least partially, conducted through a GH secretagogue receptor type 1a-independent mechanism.


Assuntos
Hormônio Luteinizante/metabolismo , Hormônios Peptídicos/farmacologia , Animais , Hormônio Foliculoestimulante/metabolismo , Grelina , Gonadotropinas/metabolismo , Hormônio do Crescimento/metabolismo , Homeostase , Hipotálamo/metabolismo , Kisspeptinas , Ligantes , Masculino , Hormônios Peptídicos/metabolismo , Proteínas/metabolismo , Radioimunoensaio , Ratos , Ratos Sprague-Dawley , Ratos Wistar , Fatores de Tempo
18.
Endocrinology ; 146(9): 3917-25, 2005 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-15932928

RESUMO

Activation of the gonadotropic axis critically depends on sufficient body energy stores, and conditions of negative energy balance result in lack of puberty onset and reproductive failure. Recently, KiSS-1 gene-derived kisspeptin, signaling through the G protein-coupled receptor 54 (GPR54), has been proven as a pivotal regulator in the control of gonadotropin secretion and puberty. However, the impact of body energy status upon hypothalamic expression and function of this system remains unexplored. In this work, we evaluated the expression of KiSS-1 and GPR54 genes at the hypothalamus as well as the ability of kisspeptin-10 to elicit GnRH and LH secretion in prepubertal rats under short-term fasting. In addition, we monitored the actions of kisspeptin on food intake and the effects of its chronic administration upon puberty onset in undernutrition. Food deprivation induced a concomitant decrease in hypothalamic KiSS-1 and increase in GPR54 mRNA levels in prepubertal rats. In addition, LH responses to kisspeptin in vivo were enhanced, and its GnRH secretagogue action in vitro was sensitized, under fasting conditions. Central kisspeptin administration failed to change food intake patterns in animals fed ad libitum or after a 12-h fast. However, chronic treatment with kisspeptin was able to restore vaginal opening (in approximately 60%) and to elicit gonadotropin and estrogen responses in a model of undernutrition. In summary, our data are the first to show an interaction between energy status and the hypothalamic KiSS-1 system, which may constitute a target for disruption (and eventual therapeutic intervention) of pubertal development in conditions of negative energy balance.


Assuntos
Hipotálamo/fisiologia , Desnutrição/fisiopatologia , Proteínas/genética , Proteínas/metabolismo , Animais , Ingestão de Alimentos/fisiologia , Feminino , Privação de Alimentos/fisiologia , Expressão Gênica , Kisspeptinas , Masculino , Ratos , Ratos Wistar , Receptores Acoplados a Proteínas G , Receptores de Kisspeptina-1 , Receptores de Neuropeptídeos/genética , Receptores de Neuropeptídeos/metabolismo , Índice de Gravidade de Doença , Maturidade Sexual/fisiologia
19.
Diabetologia ; 48(1): 140-8, 2005 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-15616803

RESUMO

AIM/HYPOTHESIS: Perinatal overfeeding predisposes humans and rats to obesity and diabetes in later life. One classical model for studying the effect of early feeding is manipulation of the size of rat litters. Rats growing up in small litters gain more weight than rats growing up in normal-sized litters. Interestingly, these obese rats maintain this phenotype in adulthood. Conversely, rats raised in large litters show a delay in growth and a decrease in body weight. The aim of this work was to assess the hypothalamic control mechanisms of food intake regulated by perinatal feeding. METHODS: Leptin levels were analysed using RIA. Leptin receptor mRNA levels were analysed using RT-PCR. Neuropeptide mRNA levels were analysed using in situ hybridisation. RESULTS: Perinatally overfed neonatal male rats exhibited hyperleptinaemia and a decrease in hypothalamic mRNA levels of the long isoform of the leptin receptor (OB-Rb), explaining their leptin resistance. Moreover, this obese model showed an increase in the mRNA expression of cocaine- and amphetamine-regulated transcript, neuropeptide Y and agouti-related protein in the hypothalamic arcuate nucleus (ARC). In contrast, perinatally underfed neonatal male rats with hypoleptinaemia showed an increase in hypothalamic mRNA of the short isoforms of the leptin receptor. Furthermore, they exhibited an increase in expression of neuropeptide Y and agouti-related protein in the ARC. CONCLUSIONS/INTERPRETATION: Rats overfed during early postnatal life show a leptin-resistant state mediated by down-regulation of the hypothalamic OB-Rb. These data, together with the increased expression of neuropeptide Y and agouti-related protein in specific neurons in the ARC, might indicate the existence of regulated programming in this nucleus and may provide a new aetiopathogenic concept in susceptibility to obesity.


Assuntos
Comportamento Alimentar/fisiologia , Hipotálamo/fisiologia , Neuropeptídeo Y/fisiologia , Proteínas/fisiologia , Receptores de Superfície Celular/fisiologia , Envelhecimento/fisiologia , Proteína Relacionada com Agouti , Ração Animal , Animais , Animais Lactentes , Sequência de Bases , Motivos Nó de Cisteína , Primers do DNA , Feminino , Hipotálamo/crescimento & desenvolvimento , Hibridização In Situ , Peptídeos e Proteínas de Sinalização Intercelular , Leptina/sangue , Masculino , Comportamento Materno , Gravidez , Isoformas de Proteínas/fisiologia , RNA Mensageiro/genética , Ratos , Ratos Sprague-Dawley , Receptores de Superfície Celular/genética , Receptores para Leptina , Reação em Cadeia da Polimerase Via Transcriptase Reversa
20.
Rev Med Univ Navarra ; 48(2): 11-7, 2004.
Artigo em Espanhol | MEDLINE | ID: mdl-15382608

RESUMO

Ghrelin, the endogenous ligand for GHS-R, was isolated from rat stomach, although other tissues exist expressing ghrelin, such as pituitary, hypothalamus, placent, ovary, testes, etc. It was showed that ghrelin is implicated in GH secretion, in vivo and in vitro. There are direct evidences that proof that ghrelin administration induces GH secretion. There are in vivo data, showing ghrelin as a most potent GH secretor than GHRH. Evidences exist of ghrelin actions in the regulation of food intake and energy homeostasis. Ghrelin has a clear role in the differents pathologies such as obesity, anorexia and bulimia.


Assuntos
Comportamento Alimentar/fisiologia , Transtornos da Alimentação e da Ingestão de Alimentos/fisiopatologia , Hormônios Peptídicos/fisiologia , Proteína Relacionada com Agouti , Animais , Apetite/efeitos dos fármacos , Apetite/fisiologia , Metabolismo Energético/fisiologia , Mucosa Gástrica/metabolismo , Grelina , Hormônio do Crescimento/metabolismo , Humanos , Hipotálamo/fisiologia , Peptídeos e Proteínas de Sinalização Intercelular , Leptina/fisiologia , Neuropeptídeo Y/fisiologia , Hormônios Peptídicos/farmacologia , Proteínas/fisiologia , Ratos , Ratos Endogâmicos Lew , Ratos Mutantes
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA