Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
J Neurosci ; 32(47): 16586-96, 2012 Nov 21.
Artigo em Inglês | MEDLINE | ID: mdl-23175814

RESUMO

Synaptic communication requires the controlled release of synaptic vesicles from presynaptic axon terminals. Release efficacy is regulated by the many proteins that comprise the presynaptic release apparatus, including Ca(2+) channels and proteins that influence Ca(2+) channel accumulation at release sites. Here we identify Drosophila RIM (Rab3 interacting molecule) and demonstrate that it localizes to active zones at the larval neuromuscular junction. In Drosophila RIM mutants, there is a large decrease in evoked synaptic transmission because of a significant reduction in both the clustering of Ca(2+) channels and the size of the readily releasable pool of synaptic vesicles at active zones. Hence, RIM plays an evolutionarily conserved role in regulating synaptic calcium channel localization and readily releasable pool size. Because RIM has traditionally been studied as an effector of Rab3 function, we investigate whether RIM is involved in the newly identified function of Rab3 in the distribution of presynaptic release machinery components across release sites. Bruchpilot (Brp), an essential component of the active zone cytomatrix T bar, is unaffected by RIM disruption, indicating that Brp localization and distribution across active zones does not require wild-type RIM. In addition, larvae containing mutations in both RIM and rab3 have reduced Ca(2+) channel levels and a Brp distribution that is very similar to that of the rab3 single mutant, indicating that RIM functions to regulate Ca(2+) channel accumulation but is not a Rab3 effector for release machinery distribution across release sites.


Assuntos
Canais de Cálcio/metabolismo , Proteínas de Drosophila/genética , Proteínas de Drosophila/metabolismo , Drosophila/fisiologia , Junção Neuromuscular/metabolismo , Proteínas rab3 de Ligação ao GTP/genética , Proteínas rab3 de Ligação ao GTP/metabolismo , Animais , Clonagem Molecular , Análise Mutacional de DNA , DNA Complementar/biossíntese , DNA Complementar/genética , Proteínas de Drosophila/fisiologia , Processamento de Imagem Assistida por Computador , Imuno-Histoquímica , Larva , Microscopia Confocal , Microscopia Eletrônica , Técnicas de Patch-Clamp , Vesículas Sinápticas/metabolismo , Vesículas Sinápticas/ultraestrutura , Proteínas rab3 de Ligação ao GTP/fisiologia
2.
J Neurosci ; 31(12): 4421-33, 2011 Mar 23.
Artigo em Inglês | MEDLINE | ID: mdl-21430143

RESUMO

The multiprotein complexes that receive and transmit axon pathfinding cues during development are essential to circuit generation. Here, we identify and characterize the Drosophila sterile α-motif (SAM) domain-containing protein Caskin, which shares homology with vertebrate Caskin, a CASK [calcium/calmodulin-(CaM)-activated serine-threonine kinase]-interacting protein. Drosophila caskin (ckn) is necessary for embryonic motor axon pathfinding and interacts genetically and physically with the leukocyte common antigen-related (Lar) receptor protein tyrosine phosphatase. In vivo and in vitro analyses of a panel of ckn loss-of-function alleles indicate that the N-terminal SAM domain of Ckn mediates its interaction with Lar. Like Caskin, Liprin-α is a neuronal adaptor protein that interacts with Lar via a SAM domain-mediated interaction. We present evidence that Lar does not bind Caskin and Liprin-α concurrently, suggesting they may assemble functionally distinct signaling complexes on Lar. Furthermore, a vertebrate Caskin homolog interacts with LAR family members, arguing that the role of ckn in Lar signal transduction is evolutionarily conserved. Last, we characterize several ckn mutants that retain Lar binding yet display guidance defects, implying the existence of additional Ckn binding partners. Indeed, we identify the SH2/SH3 adaptor protein Dock as a second Caskin-binding protein and find that Caskin binds Lar and Dock through distinct domains. Furthermore, whereas ckn has a nonredundant function in Lar-dependent signaling during motor axon targeting, ckn and dock have overlapping roles in axon outgrowth in the CNS. Together, these studies identify caskin as a neuronal adaptor protein required for axon growth and guidance.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal/genética , Proteínas Adaptadoras de Transdução de Sinal/fisiologia , Axônios/fisiologia , Proteínas de Drosophila/genética , Proteínas de Drosophila/fisiologia , Neurônios Motores/fisiologia , Proteínas do Tecido Nervoso/genética , Proteínas do Tecido Nervoso/fisiologia , Proteínas Tirosina Fosfatases Semelhantes a Receptores/fisiologia , Transdução de Sinais/fisiologia , Alelos , Animais , Animais Geneticamente Modificados , DNA Complementar/genética , Drosophila , Vias Eferentes/citologia , Vias Eferentes/fisiologia , Metanossulfonato de Etila/farmacologia , Glutationa Transferase/metabolismo , Imuno-Histoquímica , Imunoprecipitação , Mutagênese , Mutagênicos/farmacologia , Mutação/genética , Mutação/fisiologia , Plasmídeos/genética , Ligação Proteica , RNA/biossíntese , RNA/genética , Proteínas Tirosina Fosfatases Semelhantes a Receptores/genética , Transfecção
3.
Genes Dev ; 21(20): 2593-606, 2007 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-17901218

RESUMO

Phr1 is the single well-conserved murine ortholog of the invertebrate ubiquitin ligase genes highwire (in Drosophila) and rpm-1 (in Caenorhabditis elegans). The function and mechanism of action of highwire and rpm-1 are similar--both cell-autonomously regulate synaptogenesis by down-regulating the ortholog of the mitogen-activated protein kinase kinase kinase dual leucine zipper kinase (MAPKKK DLK). Here, using a targeted conditional mutant, we demonstrate that Phr1 also plays essential roles in mammalian neural development. As in invertebrates, Phr1 functions cell-autonomously to sculpt motor nerve terminals. In addition, Phr1 plays essential roles in the formation of major CNS axon tracts including those of the internal capsule, in part via cell-nonautonomous mechanisms, and these results reveal a choice point for cortical axons at the corticostriatal boundary. Furthermore, whereas the neurite morphology phenotypes of highwire and rpm-1 are suppressed by loss of DLK in flies and worms, Phr1-dependent CNS defects persist in Phr1, DLK double mutants. Thus, in the mammalian nervous system Phr1 is required for formation of major CNS axon tracts via a mechanism that is both cell-nonautonomous and independent of DLK.


Assuntos
Sistema Nervoso Central/embriologia , Proteínas de Membrana/fisiologia , Agenesia do Corpo Caloso , Animais , Axônios/ultraestrutura , Sequência de Bases , Sistema Nervoso Central/anormalidades , Córtex Cerebral/embriologia , Corpo Caloso/embriologia , Corpo Estriado/embriologia , Primers do DNA/genética , Regulação para Baixo , Evolução Molecular , Feminino , MAP Quinase Quinase Quinases/genética , MAP Quinase Quinase Quinases/fisiologia , Masculino , Proteínas de Membrana/deficiência , Proteínas de Membrana/genética , Camundongos , Camundongos Knockout , Camundongos Mutantes , Junção Neuromuscular/embriologia , Fenótipo , Gravidez , Células Ganglionares da Retina/citologia , Tálamo/embriologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA