Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Int J Mol Sci ; 22(24)2021 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-34948275

RESUMO

L-alpha glycerylphosphorylcholine (GPC), a nutritional supplement, has been demonstrated to improve neurological function. However, a new study suggests that GPC supplementation increases incident stroke risk thus its potential adverse effects warrant further investigation. Here we show that GPC promotes atherosclerosis in hyperlipidemic Apoe-/- mice. GPC can be metabolized to trimethylamine N-oxide, a pro-atherogenic agent, suggesting a potential molecular mechanism underlying the observed atherosclerosis progression. GPC supplementation shifted the gut microbial community structure, characterized by increased abundance of Parabacteroides, Ruminococcus, and Bacteroides and decreased abundance of Akkermansia, Lactobacillus, and Roseburia, as determined by 16S rRNA gene sequencing. These data are consistent with a reduction in fecal and cecal short chain fatty acids in GPC-fed mice. Additionally, we found that GPC supplementation led to an increased relative abundance of choline trimethylamine lyase (cutC)-encoding bacteria via qPCR. Interrogation of host inflammatory signaling showed that GPC supplementation increased expression of the proinflammatory effectors CXCL13 and TIMP-1 and activated NF-κB and MAPK signaling pathways in human coronary artery endothelial cells. Finally, targeted and untargeted metabolomic analysis of murine plasma revealed additional metabolites associated with GPC supplementation and atherosclerosis. In summary, our results show GPC promotes atherosclerosis through multiple mechanisms and that caution should be applied when using GPC as a nutritional supplement.


Assuntos
Aterosclerose/etiologia , Glicerilfosforilcolina/efeitos adversos , Glicerilfosforilcolina/metabolismo , Animais , Apolipoproteínas E/genética , Aterosclerose/induzido quimicamente , Aterosclerose/metabolismo , Ceco/metabolismo , Ceco/microbiologia , Linhagem Celular , Suplementos Nutricionais/efeitos adversos , Células Endoteliais/metabolismo , Ácidos Graxos Voláteis/metabolismo , Fezes/microbiologia , Feminino , Microbioma Gastrointestinal/efeitos dos fármacos , Microbioma Gastrointestinal/genética , Glicerilfosforilcolina/farmacologia , Humanos , Masculino , Metilaminas/efeitos adversos , Metilaminas/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , RNA Ribossômico 16S/genética , RNA Ribossômico 16S/metabolismo
2.
Arterioscler Thromb Vasc Biol ; 40(5): 1239-1255, 2020 05.
Artigo em Inglês | MEDLINE | ID: mdl-32212854

RESUMO

OBJECTIVE: Gut microbial metabolism of dietary choline, a nutrient abundant in a Western diet, produces trimethylamine (TMA) and the atherothrombosis- and fibrosis-promoting metabolite TMA-N-oxide (TMAO). Recent clinical and animal studies reveal that elevated TMAO levels are associated with heightened risks for both cardiovascular disease and incident chronic kidney disease development. Despite this, studies focusing on therapeutically targeting gut microbiota-dependent TMAO production and its impact on preserving renal function are limited. Approach and Results: Herein we examined the impact of pharmacological inhibition of choline diet-induced gut microbiota-dependent production of TMA, and consequently TMAO, on renal tubulointerstitial fibrosis and functional impairment in a model of chronic kidney disease. Initial studies with a gut microbial choline TMA-lyase mechanism-based inhibitor, iodomethylcholine, confirmed both marked suppression of TMA generation, and consequently TMAO levels, and selective targeting of the gut microbial compartment (ie, both accumulation of the drug in intestinal microbes and limited systemic exposure in the host). Dietary supplementation of either choline or TMAO significantly augmented multiple indices of renal functional impairment and fibrosis associated with chronic subcutaneous infusion of isoproterenol. However, the presence of the gut microbiota-targeting inhibitor iodomethylcholine blocked choline diet-induced elevation in TMAO, and both significantly improved decline in renal function, and significantly attenuated multiple indices of tubulointerstitial fibrosis. Iodomethylcholine treatment also reversed many choline diet-induced changes in cecal microbial community composition associated with TMAO and renal functional impairment. CONCLUSIONS: Selective targeting of gut microbiota-dependent TMAO generation may prevent adverse renal structural and functional alterations in subjects at risk for chronic kidney disease.


Assuntos
Bactérias/efeitos dos fármacos , Proteínas de Bactérias/antagonistas & inibidores , Colina/farmacologia , Inibidores Enzimáticos/farmacologia , Microbioma Gastrointestinal/efeitos dos fármacos , Rim/efeitos dos fármacos , Liases/antagonistas & inibidores , Metilaminas/metabolismo , Insuficiência Renal Crônica/tratamento farmacológico , Animais , Bactérias/enzimologia , Proteínas de Bactérias/metabolismo , Colina/análogos & derivados , Modelos Animais de Doenças , Fibrose , Rim/metabolismo , Rim/patologia , Rim/fisiopatologia , Liases/metabolismo , Masculino , Camundongos Endogâmicos C57BL , Insuficiência Renal Crônica/metabolismo , Insuficiência Renal Crônica/microbiologia , Insuficiência Renal Crônica/patologia
3.
J Clin Invest ; 129(1): 373-387, 2019 01 02.
Artigo em Inglês | MEDLINE | ID: mdl-30530985

RESUMO

BACKGROUND: l-Carnitine, an abundant nutrient in red meat, accelerates atherosclerosis in mice via gut microbiota-dependent formation of trimethylamine (TMA) and trimethylamine N-oxide (TMAO) via a multistep pathway involving an atherogenic intermediate, γ-butyrobetaine (γBB). The contribution of γBB in gut microbiota-dependent l-carnitine metabolism in humans is unknown. METHODS: Omnivores and vegans/vegetarians ingested deuterium-labeled l-carnitine (d3-l-carnitine) or γBB (d9-γBB), and both plasma metabolites and fecal polymicrobial transformations were examined at baseline, following oral antibiotics, or following chronic (≥2 months) l-carnitine supplementation. Human fecal commensals capable of performing each step of the l-carnitine→γBB→TMA transformation were identified. RESULTS: Studies with oral d3-l-carnitine or d9-γBB before versus after antibiotic exposure revealed gut microbiota contribution to the initial 2 steps in a metaorganismal l-carnitine→γBB→TMA→TMAO pathway in subjects. Moreover, a striking increase in d3-TMAO generation was observed in omnivores over vegans/vegetarians (>20-fold; P = 0.001) following oral d3-l-carnitine ingestion, whereas fasting endogenous plasma l-carnitine and γBB levels were similar in vegans/vegetarians (n = 32) versus omnivores (n = 40). Fecal metabolic transformation studies, and oral isotope tracer studies before versus after chronic l-carnitine supplementation, revealed that omnivores and vegans/vegetarians alike rapidly converted carnitine to γBB, whereas the second gut microbial transformation, γBB→TMA, was diet inducible (l-carnitine, omnivorous). Extensive anaerobic subculturing of human feces identified no single commensal capable of l-carnitine→TMA transformation, multiple community members that converted l-carnitine to γBB, and only 1 Clostridiales bacterium, Emergencia timonensis, that converted γBB to TMA. In coculture, E. timonensis promoted the complete l-carnitine→TMA transformation. CONCLUSION: In humans, dietary l-carnitine is converted into the atherosclerosis- and thrombosis-promoting metabolite TMAO via 2 sequential gut microbiota-dependent transformations: (a) initial rapid generation of the atherogenic intermediate γBB, followed by (b) transformation into TMA via low-abundance microbiota in omnivores, and to a markedly lower extent, in vegans/vegetarians. Gut microbiota γBB→TMA/TMAO transformation is induced by omnivorous dietary patterns and chronic l-carnitine exposure. TRIAL REGISTRATION: ClinicalTrials.gov NCT01731236. FUNDING: NIH and Office of Dietary Supplements grants HL103866, HL126827, and DK106000, and the Leducq Foundation.


Assuntos
Aterosclerose , Betaína/análogos & derivados , Carnitina/sangue , Clostridiales/metabolismo , Microbioma Gastrointestinal , Metilaminas/metabolismo , Animais , Aterosclerose/metabolismo , Aterosclerose/microbiologia , Aterosclerose/patologia , Betaína/sangue , Feminino , Humanos , Masculino , Camundongos , Projetos Piloto , Veganos
4.
JCI Insight ; 3(6)2018 03 22.
Artigo em Inglês | MEDLINE | ID: mdl-29563342

RESUMO

Using an untargeted metabolomics approach in initial (N = 99 subjects) and replication cohorts (N = 1,162), we discovered and structurally identified a plasma metabolite associated with cardiovascular disease (CVD) risks, N6,N6,N6-trimethyl-L-lysine (trimethyllysine, TML). Stable-isotope-dilution tandem mass spectrometry analyses of an independent validation cohort (N = 2,140) confirmed TML levels are independently associated with incident (3-year) major adverse cardiovascular event risks (hazards ratio [HR], 2.4; 95% CI, 1.7-3.4) and incident (5-year) mortality risk (HR, 2.9; 95% CI, 2.0-4.2). Genome-wide association studies identified several suggestive loci for TML levels, but none reached genome-wide significance; and d9(trimethyl)-TML isotope tracer studies confirmed TML can serve as a nutrient precursor for gut microbiota-dependent generation of trimethylamine (TMA) and the atherogenic metabolite trimethylamine N-oxide (TMAO). Although TML was shown to be abundant in both plant- and animal-derived foods, mouse and human fecal cultures (omnivores and vegans) showed slow conversion of TML to TMA. Furthermore, unlike chronic dietary choline, TML supplementation in mice failed to elevate plasma TMAO or heighten thrombosis potential in vivo. Thus, TML is identified as a strong predictor of incident CVD risks in subjects and to serve as a dietary precursor for gut microbiota-dependent generation of TMAO; however, TML does not appear to be a major microbial source for TMAO generation in vivo.


Assuntos
Doenças Cardiovasculares/metabolismo , Lisina/análogos & derivados , Metabolômica , Metilaminas/metabolismo , Nutrientes/metabolismo , Idoso , Animais , Aterosclerose/metabolismo , Carnitina , Colesterol/metabolismo , Colina , Modelos Animais de Doenças , Fezes/microbiologia , Feminino , Microbioma Gastrointestinal , Estudo de Associação Genômica Ampla , Humanos , Lisina/sangue , Lisina/genética , Lisina/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Pessoa de Meia-Idade , Fatores de Risco , Trombose
5.
Nat Med ; 19(5): 576-85, 2013 May.
Artigo em Inglês | MEDLINE | ID: mdl-23563705

RESUMO

Intestinal microbiota metabolism of choline and phosphatidylcholine produces trimethylamine (TMA), which is further metabolized to a proatherogenic species, trimethylamine-N-oxide (TMAO). We demonstrate here that metabolism by intestinal microbiota of dietary L-carnitine, a trimethylamine abundant in red meat, also produces TMAO and accelerates atherosclerosis in mice. Omnivorous human subjects produced more TMAO than did vegans or vegetarians following ingestion of L-carnitine through a microbiota-dependent mechanism. The presence of specific bacterial taxa in human feces was associated with both plasma TMAO concentration and dietary status. Plasma L-carnitine levels in subjects undergoing cardiac evaluation (n = 2,595) predicted increased risks for both prevalent cardiovascular disease (CVD) and incident major adverse cardiac events (myocardial infarction, stroke or death), but only among subjects with concurrently high TMAO levels. Chronic dietary L-carnitine supplementation in mice altered cecal microbial composition, markedly enhanced synthesis of TMA and TMAO, and increased atherosclerosis, but this did not occur if intestinal microbiota was concurrently suppressed. In mice with an intact intestinal microbiota, dietary supplementation with TMAO or either carnitine or choline reduced in vivo reverse cholesterol transport. Intestinal microbiota may thus contribute to the well-established link between high levels of red meat consumption and CVD risk.


Assuntos
Aterosclerose/etiologia , Carnitina/metabolismo , Intestinos/microbiologia , Metagenoma , Animais , Aterosclerose/microbiologia , Aterosclerose/fisiopatologia , Carnitina/química , Colesterol/metabolismo , Colina/química , Desmosterol/metabolismo , Feminino , Humanos , Macrófagos/metabolismo , Espectrometria de Massas , Carne , Metilaminas/sangue , Metilaminas/metabolismo , Camundongos , Camundongos Knockout , RNA/metabolismo , Fatores de Tempo
6.
Nature ; 472(7341): 57-63, 2011 Apr 07.
Artigo em Inglês | MEDLINE | ID: mdl-21475195

RESUMO

Metabolomics studies hold promise for the discovery of pathways linked to disease processes. Cardiovascular disease (CVD) represents the leading cause of death and morbidity worldwide. Here we used a metabolomics approach to generate unbiased small-molecule metabolic profiles in plasma that predict risk for CVD. Three metabolites of the dietary lipid phosphatidylcholine--choline, trimethylamine N-oxide (TMAO) and betaine--were identified and then shown to predict risk for CVD in an independent large clinical cohort. Dietary supplementation of mice with choline, TMAO or betaine promoted upregulation of multiple macrophage scavenger receptors linked to atherosclerosis, and supplementation with choline or TMAO promoted atherosclerosis. Studies using germ-free mice confirmed a critical role for dietary choline and gut flora in TMAO production, augmented macrophage cholesterol accumulation and foam cell formation. Suppression of intestinal microflora in atherosclerosis-prone mice inhibited dietary-choline-enhanced atherosclerosis. Genetic variations controlling expression of flavin monooxygenases, an enzymatic source of TMAO, segregated with atherosclerosis in hyperlipidaemic mice. Discovery of a relationship between gut-flora-dependent metabolism of dietary phosphatidylcholine and CVD pathogenesis provides opportunities for the development of new diagnostic tests and therapeutic approaches for atherosclerotic heart disease.


Assuntos
Doenças Cardiovasculares/metabolismo , Doenças Cardiovasculares/microbiologia , Trato Gastrointestinal/metabolismo , Trato Gastrointestinal/microbiologia , Fosfatidilcolinas/metabolismo , Animais , Aterosclerose/induzido quimicamente , Aterosclerose/genética , Aterosclerose/metabolismo , Aterosclerose/microbiologia , Betaína/sangue , Betaína/metabolismo , Biomarcadores/sangue , Biomarcadores/metabolismo , Doenças Cardiovasculares/sangue , Doenças Cardiovasculares/diagnóstico , HDL-Colesterol/sangue , Colina/administração & dosagem , Colina/sangue , Colina/metabolismo , Colina/farmacologia , Dieta/efeitos adversos , Gorduras na Dieta/sangue , Gorduras na Dieta/metabolismo , Gorduras na Dieta/farmacologia , Feminino , Regulação da Expressão Gênica , Vida Livre de Germes , Humanos , Fígado/enzimologia , Macrófagos/metabolismo , Metabolômica , Metilaminas/sangue , Metilaminas/metabolismo , Metilaminas/farmacologia , Camundongos , Camundongos Endogâmicos C57BL , Oxigenases/genética , Oxigenases/metabolismo , Fenótipo , Fosfatidilcolinas/administração & dosagem , Fosfatidilcolinas/sangue , Fosfatidilcolinas/farmacologia , Receptores Depuradores/metabolismo , Medição de Risco
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA