Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Animals (Basel) ; 13(23)2023 Nov 25.
Artigo em Inglês | MEDLINE | ID: mdl-38066999

RESUMO

One hundred and twenty-eight boars and gilts of the Duroc × Landrace × Yorkshire variety with an initial body weight (BW) of 52.49 ± 0.48 kg were used in a randomized complete block design for a 63-day experiment. The four treatment groups were: control diet (CON), CON + 0.2% soybean oligosaccharides (SBOS), CON + 0.4% SBOS, and CON + 0.8% SBOS. The results showed that the average daily weight gain (ADG) was significantly higher in the 0.8% SBOS group than in the CON group on days 0-63 (p < 0.05). Compared with the CON group, adding 0.8% SBOS to the diet significantly increased the carcass weight, dressing percentage, and carcass lean percentage, but decreased the average backfat depth of growing-finishing pigs (p < 0.05). Adding different concentrations (0.2%, 0.4%, and 0.8%) of SBOS to the diet can significantly increase the concentrations of acetate, propionate, and butyrate in feces (p < 0.05). The activities of malic enzyme and fatty acid synthase in the 0.8% group were significantly lower than those in the 0.2% and CON groups (p < 0.05). In summary, 0.8% SBOS supplementation to growing-finishing pigs' diets can reduce lipid deposition and increase ADG.

2.
Antioxidants (Basel) ; 12(10)2023 Oct 12.
Artigo em Inglês | MEDLINE | ID: mdl-37891931

RESUMO

Early weaning of piglets was prone to increase reactive oxygen species, disrupt the redox balance, decrease antioxidant capacity, cause oxidative stress and intestinal oxidative damage, and lead to diarrhea in piglets. This research aimed to study dietary taurine (Tau) supplementation at a level relieving intestinal oxidative damage in early-weaned piglets. A total of 48 piglets were assigned to four groups of 12 individuals and fed a basal diet with 0.0% Tau (CON), 0.2% Tau (L-Tau), 0.3% Tau (M-Tau), or 0.4% Tau (H-Tau), respectively. The animal experiment lasted 30 days. The final weight, weight gain, average daily gain, and feed conversion rate increased with the increase in dietary Tau (Linear, p < 0.05; Quadratic p < 0.05), while the diarrhea index of piglets decreased with the increase in dietary Tau (Linear, p < 0.05). Serum malondialdehyde, nitric oxide (NO), D-lactose, and oxidized glutathione (GSSG) concentrations decreased with the increase in dietary Tau (Linear, p < 0.05). The O2•- and •OH clearance rate in serum, liver, and jejunum mucosa increased with the increase in dietary Tau (Linear, p < 0.05). Serum superoxide dismutase (SOD) activity, glutathione peroxidase (GPX) activity, catalase (CAT) activity, and peroxidase (POD) activity and total antioxidant capacity increased with the increase in dietary Tau (Linear, p < 0.05). The serum glutathione (GSH) concentration and the ratio of GSH to GSSG increased with the increase in dietary Tau (Linear, p < 0.05). The POD and glutathione synthase activity in the liver and jejunum mucosa increased with the increase in dietary Tau (Linear, p < 0.05). The mRNA abundances of HO-1 and GPX1 in the H-Tau group were higher than that in the L-Tau, M-Tau, and CON groups (p < 0.05). The mRNA abundances of SOD1 and Nrf2 in the M-Tau and H-Tau groups were higher than in the L-Tau and CON groups (p < 0.05). The mRNA abundance of SOD2 in the L-Tau, M-Tau, and H-Tau groups was higher than in the CON group (p < 0.05). The VH and the ratio of VH to CD of jejunum and ileum increased with the increase in dietary Tau (Linear, p < 0.05). The mRNA abundances of occludens 1 and claudin 1 in the H-Tau group were higher than that in the CON, L-Tau, and M-Tau (p < 0.05). The mRNA abundance of occludin in the L-Tau, M-Tau, and H-Tau groups was higher than that in CON (p < 0.05). The abundance of Firmicutes increased with the increase in dietary Tau (Linear, p < 0.05), while Proteobacteria and Spirochaetota decreased with the increase in dietary Tau (Linear, p < 0.05). Collectively, dietary supplementation of 0.3% and 0.4% Tau in feed could significantly improve the growth performance and enhance the antioxidant capacity of piglets.

3.
Vet Sci ; 10(2)2023 Jan 21.
Artigo em Inglês | MEDLINE | ID: mdl-36851383

RESUMO

At present, probiotics are being extensively evaluated for their efficacy as an alternative to antibiotics, and their safety in livestock production. In this study, 128 (Duroc, Yorkshire and Landrace) pigs with an average initial body weight of 28.38 ± 0.25 kg were allocated to four dietary treatments in a randomized complete-block design. There were eight pens per treatment, with four pigs per pen (two barrows and two gilts). Dietary treatments included: (1) control diet; (2) control diet + 0.05% complex probiotic; (3) control diet + 0.1% complex probiotic; (4) control diet + 0.2% complex probiotic. During the 28-day experimental period, the feeding of 0.1% complex probiotic in the diet increased body weight and average daily gain (p < 0.05). The addition of complex probiotics decreased total cholesterol and glucose concentrations in the blood (p < 0.01). Acetate concentrations in the blood increased from 0.1% complex probiotic in the diet (p < 0.05), while NH3 and H2S emissions in the feces decreased (p < 0.05) from 0.1% or 0.2% complex probiotic in the diet. In conclusion, dietary complex probiotic supplementation changed the composition of intestinal short-chain fatty acids and improved growth performance for growing pigs.

4.
Front Microbiol ; 12: 771617, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34858378

RESUMO

The present study aimed to investigate the effects of dietary zinc sources on the growth performance and gut health of weaned piglets. In total, 96 Duroc × Landrace × Yorkshire (DLY) weaned piglets with an initial average body weight of 8.81±0.42kg were divided into four groups, with six replicates per treatment and four pigs per replicate. The dietary treatment groups were as follows: (1) control group, basal diet; (2) zinc sulphate (ZnSO4) group, basal diet +100mg/kg ZnSO4; (3) glycine zinc (Gly-Zn) group, basal diet +100mg/kg Gly-Zn and (4) zinc lactate group, and basal diet +100mg/kg zinc lactate. The whole trial lasted for 28days. Decreased F/G was noted in the Gly-Zn and zinc lactate groups (p<0.05). The zinc lactate group had a lower diarrhea rate than the control group (p<0.05). Moreover, the ZnSO4, Gly-Zn, and zinc lactate groups had significantly higher apparent total tract digestibility of dry matter (DM), crude protein (CP), ether extract (EE), crude ash, and zinc than the control group (p<0.05). The Gly-Zn and zinc lactate groups had higher jejunal villus height and a higher villus height:crypt depth ratio than the control group (p<0.05). In addition, the ZnSO4, Gly-Zn and zinc lactate groups had a significantly lower mRNA expression level of jejunal ZRT/IRT-like protein 4 (ZIP4) and higher mRNA expression level of jejunal interleukin-1ß (IL-1ß) than the control group (p<0.05). The mRNA expression level of jejunal zinc transporter 2 (ZNT2) was higher and that of jejunal Bcl-2-associated X protein (Bax) was lower in the Gly-Zn and zinc lactate groups than in the control group (p<0.05). Moreover, the zinc lactate group had a higher count of Lactobacillus spp. in the cecal digesta and higher mRNA expression levels of jejunal occludin and mucin 2 (MUC2) than the control group (p<0.05). In conclusion, dietary supplementation with 100mg/kg ZnSO4, Gly-Zn, or zinc lactate could improve the growth performance and gut barrier function of weaned piglets. Dietary supplementation with organic zinc, particularly zinc lactate, had the best effect.

5.
Front Pharmacol ; 11: 732, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32595492

RESUMO

BACKGROUND: Diabetic nephropathy (DN) is a serious complication of diabetes mellitus (DM) with limited treatment options. DN leads to progressive renal failure and accelerates rapidly into end-stage renal disease. Astragalus mongholicus Bunge and Panax notoginseng (Burkill) F.H. Chen formula (APF) is a traditional Chinese medicine (TCM) formula widely used to treat chronic kidney diseases (CKD) in the clinic in the southwest of China. The aim of this study is to explore how APF and its related TCM theory work on DN and whether mTOR/PINK1/Parkin signaling plays a part in this process. METHODS: HPLC was used for preliminary chemical analysis and quantitative analysis of the five components of APF. An in vivo autophagy deficiency model was established in C57BL/6 mice by streptozocin (STZ) combined with a high-fat and high-sugar diet, while the in vitro autophagy deficiency model was induced with high glucose (HG) in renal mesangial cells (RMCs). Renal histopathology staining was performed to investigate the extents of inflammation and injury. Real time-PCR and Western blotting techniques were utilized to assess autophagy-related proteins. RESULTS: APF significantly ameliorated renal injury in DN mice, specifically restoring blood urea nitrogen, serum creatinine, and 24-hour albuminuria. APF also reduced the mRNA and protein expressions of TNFα, IL-1ß, and IL-6 in STZ-induced DN mice. Furthermore, APF improved the autophagy deficiency induced by STZ in vivo or HG in vitro, as revealed by changes in the expressions of mTOR, PINK1, Parkin, Beclin 1, p62, and LC3B. Notably, inhibition of autophagy with 3-methyladenine in APF-treated RMCs aggravated cellular damage and altered mTOR/PINK1/Parkin signaling, indicating that APF rescued HG damage through promoting autophagy. CONCLUSION: APF may protect the kidneys from inflammation injuries in DN by upregulating autophagy via suppressing mTOR and activating PINK1/Parkin signaling. This experimental evidence strongly supports APF as a potential option for the prevention and treatment of DN.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA