Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Pharm Res ; 40(1): 265-279, 2023 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-36451070

RESUMO

PURPOSE: Messenger RNA (mRNA) has shown great promise for vaccine against both infectious diseases and cancer. However, mRNA is unstable and requires a delivery vehicle for efficient cellular uptake and degradation protection. So far, lipid nanoparticles (LNPs) represent the most advanced delivery platform for mRNA delivery. However, no published studies have compared lipid microparticles (LMPs) with lipid nanoparticles (LNPs) in delivering mRNA systematically, therefore, we compared the impact of particle size on delivery efficacy of mRNA vaccine and subsequent immune responses. METHODS: Herein, we prepared 3 different size lipid particles, from nano-sized to micro-sized, and they loaded similar amounts of mRNA. These lipid particles were investigated both in vitro and in vivo, followed by evaluating the impact of particle size on inducing cellular and humoral immune responses. RESULTS: In this study, all mRNA vaccines showed a robust immune response and lipid microparticles (LMPs) show similar efficacy with lipid nanoparticles (LNPs) in delivering mRNA and preventing cancer. In addition, immune adjuvants, either toll like receptors or active molecules from traditional Chinese medicine, can improve the efficacy of mRNA vaccines. CONCLUSIONS: Considering the efficiency of delivery and endocytosis, besides lipid nanoparticles with size smaller than 150 nm, lipid microparticles (LMPs) also have the potential to be an alternative and promising delivery system for mRNA vaccines.


Assuntos
Nanopartículas , Neoplasias , Vacinas , Humanos , RNA Mensageiro/metabolismo , Lipídeos , Lipossomos , Neoplasias/prevenção & controle
2.
J Neuroophthalmol ; 29(2): 96-103, 2009 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-19491631

RESUMO

BACKGROUND: Motion perception may be preserved after damage to striate cortex (primary visual cortex, area V1). Awareness and normal discrimination of fast-moving stimuli have been observed even in the complete absence of V1. These facts suggest that motion-sensitive cortex (the V5/MT complex or V5/MT+) may be activated by direct thalamic or collicular inputs that bypass V1. Such projections have been identified previously in monkeys but have not been shown in humans using neuroimaging techniques. METHODS: We used diffusion tensor imaging (DTI) tractography to visualize white matter fiber tracts connecting with V5/MT+ in 10 healthy volunteers. V5/MT+ was localized for each subject using functional MRI (fMRI). Functional activity maps were overlaid on high-resolution anatomical images and registered with the diffusion-weighted images to define V5/MT+ as the region of interest (ROI) for DTI tractography analysis. Fibers connecting to V1 were excluded from the analysis. RESULTS: Using conservative tractography parameters, we found connections between the V5/MT+ region and the posterior thalamus and/or superior colliculus in 4 of 10 subjects. CONCLUSIONS: Connections between the V5/MT+ region and the posterior thalamus and/or superior colliculus may explain visual motion awareness in the absence of a functioning V1.


Assuntos
Percepção de Movimento/fisiologia , Córtex Visual/irrigação sanguínea , Córtex Visual/fisiologia , Vias Visuais/irrigação sanguínea , Vias Visuais/fisiologia , Adulto , Mapeamento Encefálico , Imagem de Difusão por Ressonância Magnética , Feminino , Humanos , Processamento de Imagem Assistida por Computador/métodos , Imageamento por Ressonância Magnética , Masculino , Oxigênio/sangue , Estimulação Luminosa , Colículos Superiores/irrigação sanguínea , Colículos Superiores/fisiologia , Tálamo/irrigação sanguínea , Tálamo/fisiologia , Adulto Jovem
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA