Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Tipo de estudo
País/Região como assunto
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Chemosphere ; 268: 129368, 2021 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-33360943

RESUMO

Tropilaelaps mercedesae is not only a major threat to honey bees in Asia but also a potential risk to global apiculture due to trade. Imidacloprid is a systemic insecticide that negatively affects individual bees. Moreover, the health of honey bees may be threatened by imidacloprid exposure and T. mercedesae infestation. We studied the effects of T. mercedesae and imidacloprid on the survival, food consumption and midgut bacterial diversity of Apis mellifera in the laboratory. Illumina 16S rRNA gene sequencing was used to determine the bacterial composition in the honey bee midgut. T. mercedesae decreased survival in parasitized honey bees compared with nonparasitized honey bees, but there was no significant difference in food consumption. The imidacloprid 50 µg/L diet significantly decreased syrup consumption of A. mellifera compared with the control diet. The combination of T. mercedesae infestation and imidacloprid 50 µg/L exposure reduced survival and increased pollen consumption of A. mellifera. T. mercedesae infestation or a combination of T. mercedesae infestation and exposure to 25 µg/L imidacloprid affected the midgut bacterial composition of honey bees. T. mercedesae infestation and imidacloprid exposure may reduce the survival and affect honey bee health.


Assuntos
Inseticidas , Nitrocompostos , Animais , Ásia , Abelhas , Inseticidas/toxicidade , Neonicotinoides/toxicidade , Nitrocompostos/toxicidade , Pólen , RNA Ribossômico 16S/genética
2.
Ecotoxicol Environ Saf ; 181: 381-387, 2019 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-31212186

RESUMO

The effects of Bt Cry9Ee toxin on honey bee, Apis mellifera L., survival, developmental rate, larval weight, pollen consumption, and midgut bacterial diversity were tested in the laboratory. Honey bee larvae and adults were reared in vitro and fed a diet that contained Cry9Ee toxin at 0.01, 0.1, 1, and 10 mg/L. Cry9Ee toxin 0.01, 0.1, and 1 mg/L in diet used in this study may represent a value closer to field relevance and the highest concentration is unlikely to be encountered in the field and thus represent a worst case scenario. The dependent variables were compared for groups of honey bees feeding on treated diet and those feeding on negative control (no addition of a test substance), solvent control (0.01 mM Na2CO3), and positive control diet (dimethoate 45 mg/L). Bt Cry9Ee toxin did not affect survival or larval weight, and the result was great confidence in accepting the null hypothesis by power analysis. The effect on development rates and pollen consumption were the inconclusive results because the post-hoc power was less than 0.8. Furthermore, the midgut bacterial structure and compositions were determined using high-throughput sequencing targeting the V3-V4 regions of the 16S rDNA. All core honey bee intestinal bacterial class such as γ-Proteobacteria, Actinobacteria, α-Proteobacteria, Bacilli, ß-Proteobacteria, and Bacteroidia were detected, and no significant changes were found in the species diversity and richness between Cry9Ee treatments and laboratory control.


Assuntos
Proteínas de Bactérias/toxicidade , Abelhas/efeitos dos fármacos , Endotoxinas/toxicidade , Proteínas Hemolisinas/toxicidade , Animais , Toxinas de Bacillus thuringiensis , Bactérias/efeitos dos fármacos , Bactérias/isolamento & purificação , Abelhas/crescimento & desenvolvimento , Sistema Digestório/microbiologia , Larva/efeitos dos fármacos , Pólen
3.
J Econ Entomol ; 109(6): 2259-2263, 2016 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-27670271

RESUMO

The cry1Ie gene may be a good candidate for the development of Bt maize because over-expression of Cry1Ie is highly toxic to Lepidopteran pests such as Heliothis armigera Hübner and Ostrinia furnacalis Guenée. The Bt cry1Ie gene also has no cross resistance with other insecticidal proteins such as Cry1Ab, Cry1Ac, Cry1Ah, or Cry1F. Chinese honey bees (Apis cerana cerana) are potentially exposed to insect-resistant genetically modified (IRGM) crops expressing Cry1Ie toxin via the collection of IRGM crop pollen. In this study, we tested whether Chinese honey bee workers are negatively affected by sugar syrup containing 20, 200, or 20,000 ng/ml Cry1Ie toxin and 48 ng/ml imidacloprid under controlled laboratory conditions. Our results demonstrated that the Cry1Ie toxin does not adversely impact survival and pollen consumption of Chinese honey bees. However, imidacloprid decreases Chinese honey bee survival and the total pollen consumption on the 5th, 6th, and 18th d of exposure. The described bioassay is suitable to assess the effects of GM expressed toxins against honey bee.


Assuntos
Proteínas de Bactérias/toxicidade , Abelhas/efeitos dos fármacos , Endotoxinas/toxicidade , Proteínas Hemolisinas/toxicidade , Inseticidas/toxicidade , Pólen , Animais , Toxinas de Bacillus thuringiensis , Abelhas/fisiologia , Dieta , Comportamento Alimentar/efeitos dos fármacos , Imidazóis/toxicidade , Longevidade/efeitos dos fármacos , Neonicotinoides , Nitrocompostos/toxicidade
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA