Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 69
Filtrar
1.
Mol Metab ; 79: 101840, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38036170

RESUMO

OBJECTIVE: Free fatty acid receptor-1 (FFAR1) is a medium- and long-chain fatty acid sensing G protein-coupled receptor that is highly expressed in the hypothalamus. Here, we investigated the central role of FFAR1 on energy balance. METHODS: Central FFAR1 agonism and virogenic knockdown were performed in mice. Energy balance studies, infrared thermographic analysis of brown adipose tissue (BAT) and molecular analysis of the hypothalamus, BAT, white adipose tissue (WAT) and liver were carried out. RESULTS: Pharmacological stimulation of FFAR1, using central administration of its agonist TUG-905 in diet-induced obese mice, decreases body weight and is associated with increased energy expenditure, BAT thermogenesis and browning of subcutaneous WAT (sWAT), as well as reduced AMP-activated protein kinase (AMPK) levels, reduced inflammation, and decreased endoplasmic reticulum (ER) stress in the hypothalamus. As FFAR1 is expressed in distinct hypothalamic neuronal subpopulations, we used an AAV vector expressing a shRNA to specifically knockdown Ffar1 in proopiomelanocortin (POMC) neurons of the arcuate nucleus of the hypothalamus (ARC) of obese mice. Our data showed that knockdown of Ffar1 in POMC neurons promoted hyperphagia and body weight gain. In parallel, these mice developed hepatic insulin resistance and steatosis. CONCLUSIONS: FFAR1 emerges as a new hypothalamic nutrient sensor regulating whole body energy balance. Moreover, pharmacological activation of FFAR1 could provide a therapeutic advance in the management of obesity and its associated metabolic disorders.


Assuntos
Ácidos Graxos não Esterificados , Pró-Opiomelanocortina , Camundongos , Animais , Ácidos Graxos não Esterificados/metabolismo , Pró-Opiomelanocortina/genética , Pró-Opiomelanocortina/metabolismo , Camundongos Obesos , Peso Corporal , Hipotálamo/metabolismo , Receptores Acoplados a Proteínas G/genética , Receptores Acoplados a Proteínas G/metabolismo , Metabolismo Energético/fisiologia
2.
Metabolism ; 139: 155350, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36423694

RESUMO

BACKGROUND AND AIMS: Leptin receptor (LEPR) deficiency promotes severe obesity and metabolic disorders. However, the current therapeutic options against this syndrome are scarce. METHODS: db/db mice and their wildtypes were systemically treated with neuronal-targeted small extracellular vesicles (sEVs) harboring a plasmid encoding a dominant negative mutant of AMP-activated protein kinase alpha 1 (AMPKα1-DN) driven by steroidogenic factor 1 (SF1) promoter; this approach allowed to modulate AMPK activity, specifically in SF1 cells of the ventromedial nucleus of the hypothalamus (VMH). Animals were metabolically phenotyped. RESULTS: db/db mice intravenously injected with SF1-AMPKα1-DN loaded sEVs showed a marked feeding-independent weight loss and decreased adiposity, associated with increased sympathetic tone, brown adipose tissue (BAT) thermogenesis and browning of white adipose tissue (WAT). CONCLUSION: Overall, this evidence indicates that specific modulation of hypothalamic AMPK using a sEV-based technology may be a suitable strategy against genetic forms of obesity, such as LEPR deficiency.


Assuntos
Vesículas Extracelulares , Receptores para Leptina , Camundongos , Animais , Receptores para Leptina/genética , Receptores para Leptina/metabolismo , Proteínas Quinases Ativadas por AMP/genética , Proteínas Quinases Ativadas por AMP/metabolismo , Hipotálamo/metabolismo , Obesidade/genética , Obesidade/metabolismo , Tecido Adiposo Marrom/metabolismo , Redução de Peso , Termogênese/fisiologia , Tecido Adiposo Branco/metabolismo , Vesículas Extracelulares/metabolismo , Metabolismo Energético
3.
Pathogens ; 11(12)2022 Nov 23.
Artigo em Inglês | MEDLINE | ID: mdl-36558733

RESUMO

BACKGROUND: Members of Micobacterium. abscessus complex comprises three subspecies (M. abscessus subsp. Abscessus, M. abscessus subsp. Bolletii, and M. abscessus subsp. Massiliense) and are a rapid-growing nontuberculous mycobacteria present in different aquatic habitats and soil. It often causes a wide spectrum of infections involving pulmonary infections, surgical wound infections, and infections related to mesotherapy, catheters, hemodialysis devices, endocarditis, and disseminated infections in immunocompromised individuals. METHODS: In this article we comment on the most relevant aspects of nine patients with skin lesions caused by M. abscessus subsp. massiliense infection. Clinical characteristics, histopathology, and molecular identification were performed. RESULTS: The patients in the clinical cases presented a history of trauma, tattoos, and physical therapy techniques. The most common treatments were minocycline and clindamycin, doxycycline, ceftriaxone, cephalexin, moxifloxacin, rifampicin, and trimethoprim-sulfamethoxazole. The evolution of the treated patients was acceptable, except for one patient, who showed a partial improvement. M. massiliense were identified in all clinical cases using a species-specific PCR. CONCLUSION: Our series consisted of nine cases of skin biopsies recorded in different years; for this reason, we do not have all the data necessary for a complete description, in particular in four cases, causing limitations in the manuscript, especially in the therapy used and the evolution of patients due to lack of follow-up.

4.
Nat Metab ; 4(7): 901-917, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-35879461

RESUMO

Early-life determinants are thought to be a major factor in the rapid increase of obesity. However, while maternal nutrition has been extensively studied, the effects of breastfeeding by the infant on the reprogramming of energy balance in childhood and throughout adulthood remain largely unknown. Here we show that delayed weaning in rat pups protects them against diet-induced obesity in adulthood, through enhanced brown adipose tissue thermogenesis and energy expenditure. In-depth metabolic phenotyping in this rat model as well as in transgenic mice reveals that the effects of prolonged suckling are mediated by increased hepatic fibroblast growth factor 21 (FGF21) production and tanycyte-controlled access to the hypothalamus in adulthood. Specifically, FGF21 activates GABA-containing neurons expressing dopamine receptor 2 in the lateral hypothalamic area and zona incerta. Prolonged breastfeeding thus constitutes a protective mechanism against obesity by affecting long-lasting physiological changes in liver-to-hypothalamus communication and hypothalamic metabolic regulation.


Assuntos
Aleitamento Materno , Obesidade , Animais , Feminino , Fatores de Crescimento de Fibroblastos , Humanos , Hipotálamo/metabolismo , Fígado/metabolismo , Camundongos , Obesidade/metabolismo , Obesidade/prevenção & controle , Ratos
5.
Arthritis Rheumatol ; 74(2): 212-222, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-34398520

RESUMO

OBJECTIVE: To investigate whether thermogenesis and the hypothalamus may be involved in the physiopathology of experimental arthritis (EA). METHODS: EA was induced in male Lewis rats by intradermal injection of Freund's complete adjuvant (CFA). Food intake, body weight, plasma cytokines, thermographic analysis, gene and protein expression of thermogenic markers in brown adipose tissue (BAT) and white adipose tissue (WAT), and hypothalamic AMP-activated protein kinase (AMPK) were analyzed. Virogenetic activation of hypothalamic AMPK was performed. RESULTS: We first demonstrated that EA was associated with increased BAT thermogenesis and browning of subcutaneous WAT leading to elevated energy expenditure. Moreover, rats experiencing EA showed inhibition of hypothalamic AMPK, a canonical energy sensor modulating energy homeostasis at the central level. Notably, specific genetic activation of AMPK in the ventromedial nucleus of the hypothalamus (a key site modulating energy metabolism) reversed the effect of EA on energy balance, brown fat, and browning, as well as promoting amelioration of synovial inflammation in experimental arthritis. CONCLUSION: Overall, these data indicate that EA promotes a central catabolic state that can be targeted and reversed by the activation of hypothalamic AMPK. This might provide new therapeutic alternatives to treat rheumatoid arthritis (RA)-associated metabolic comorbidities, improving the overall prognosis in patients with RA.


Assuntos
Proteínas Quinases Ativadas por AMP/fisiologia , Artrite/metabolismo , Artrite/fisiopatologia , Hipotálamo/enzimologia , Termogênese , Animais , Artrite/complicações , Masculino , Ratos , Ratos Endogâmicos Lew
6.
Nutrients ; 13(12)2021 Nov 24.
Artigo em Inglês | MEDLINE | ID: mdl-34959756

RESUMO

Besides their direct effects on peripheral metabolic tissues, thyroid hormones (TH) act on the hypothalamus to modulate energy homeostasis. However, since most of the hypothalamic actions of TH have been addressed in studies with direct central administration, the estimation of the relative contribution of the central vs. peripheral effects in physiologic conditions of peripheral release (or administration) of TH remains unclear. In this study we used two different models of peripherally induced hyperthyroidism (i.e., T4 and T3 oral administration) to assess and compare the serum and hypothalamic TH status and relate them to the metabolic effects of the treatment. Peripheral TH treatment affected feeding behavior, overall growth, core body temperature, body composition, brown adipose tissue (BAT) morphology and uncoupling protein 1 (UCP1) levels and metabolic activity, white adipose tissue (WAT) browning and liver metabolism. This resulted in an increased overall uncoupling capacity and a shift of the lipid metabolism from WAT accumulation to BAT fueling. Both peripheral treatment protocols induced significant changes in TH concentrations within the hypothalamus, with T3 eliciting a downregulation of hypothalamic AMP-activated protein kinase (AMPK), supporting the existence of a central action of peripheral TH. Altogether, these data suggest that peripherally administered TH modulate energy balance by various mechanisms; they also provide a unifying vision of the centrally mediated and the direct local metabolic effect of TH in the context of hyperthyroidism.


Assuntos
Proteínas Quinases Ativadas por AMP/efeitos dos fármacos , Metabolismo Energético/efeitos dos fármacos , Hipertireoidismo/metabolismo , Hipotálamo/metabolismo , Hormônios Tireóideos/administração & dosagem , Tecido Adiposo Marrom/metabolismo , Tecido Adiposo Branco/metabolismo , Animais , Modelos Animais de Doenças , Hipertireoidismo/induzido quimicamente , Masculino , Camundongos , Camundongos Endogâmicos C57BL
7.
Nat Metab ; 3(10): 1415-1431, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-34675439

RESUMO

Current pharmacological therapies for treating obesity are of limited efficacy. Genetic ablation or loss of function of AMP-activated protein kinase alpha 1 (AMPKα1) in steroidogenic factor 1 (SF1) neurons of the ventromedial nucleus of the hypothalamus (VMH) induces feeding-independent resistance to obesity due to sympathetic activation of brown adipose tissue (BAT) thermogenesis. Here, we show that body weight of obese mice can be reduced by intravenous injection of small extracellular vesicles (sEVs) delivering a plasmid encoding an AMPKα1 dominant negative mutant (AMPKα1-DN) targeted to VMH-SF1 neurons. The beneficial effect of SF1-AMPKα1-DN-loaded sEVs is feeding-independent and involves sympathetic nerve activation and increased UCP1-dependent thermogenesis in BAT. Our results underscore the potential of sEVs to specifically target AMPK in hypothalamic neurons and introduce a broader strategy to manipulate body weight and reduce obesity.


Assuntos
Proteínas Quinases Ativadas por AMP/metabolismo , Tecido Adiposo Marrom/enzimologia , Vesículas Extracelulares/metabolismo , Hipotálamo/enzimologia , Obesidade/metabolismo , Animais , Metabolismo Energético , Camundongos , Termogênese , Redução de Peso
8.
Nutrients ; 13(7)2021 Jun 22.
Artigo em Inglês | MEDLINE | ID: mdl-34206176

RESUMO

Energy restriction is a first therapy in the treatment of obesity, but the underlying biological mechanisms have not been completely clarified. We analyzed the effects of restriction of high-fat diet (HFD) on weight loss, circulating gut hormone levels and expression of hypothalamic neuropeptides. Ten-week-old male Wistar rats (n = 40) were randomly distributed into four groups: two fed ad libitum a normal diet (ND) (N group) or a HFD (H group) and two subjected to a 25% caloric restriction of ND (NR group) or HFD (HR group) for 9 weeks. A 25% restriction of HFD over 9 weeks leads to a 36% weight loss with regard to the group fed HFD ad libitum accompanied by normal values in adiposity index and food efficiency ratio (FER). This restriction also carried the normalization of NPY, AgRP and POMC hypothalamic mRNA expression, without changes in CART. Caloric restriction did not succeed in improving glucose homeostasis but reduced HFD-induced hyperinsulinemia. In conclusion, 25% restriction of HFD reduced adiposity and improved metabolism in experimental obesity, without changes in glycemia. Restriction of the HFD triggered the normalization of hypothalamic NPY, AgRP and POMC expression, as well as ghrelin and leptin levels.


Assuntos
Restrição Calórica/métodos , Dieta com Restrição de Gorduras/métodos , Doenças Metabólicas/prevenção & controle , Neuropeptídeos/metabolismo , Obesidade/dietoterapia , Adiposidade/fisiologia , Proteína Relacionada com Agouti/metabolismo , Animais , Dieta Hiperlipídica/efeitos adversos , Gorduras na Dieta/administração & dosagem , Modelos Animais de Doenças , Ingestão de Alimentos/fisiologia , Grelina/metabolismo , Hipotálamo/metabolismo , Leptina/metabolismo , Masculino , Doenças Metabólicas/etiologia , Neuropeptídeo Y/metabolismo , Obesidade/complicações , Pró-Opiomelanocortina/metabolismo , Ratos , Ratos Wistar , Redução de Peso/fisiologia
9.
Front Endocrinol (Lausanne) ; 12: 669980, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34149618

RESUMO

Anorexia nervosa (AN) is an eating disorder leading to malnutrition and, ultimately, to energy wasting and cachexia. Rodents develop activity-based anorexia (ABA) when simultaneously exposed to a restricted feeding schedule and allowed free access to running wheels. These conditions lead to a life-threatening reduction in body weight, resembling AN in human patients. Here, we investigate the effect of ABA on whole body energy homeostasis at different housing temperatures. Our data show that ABA rats develop hyperactivity and hypophagia, which account for a massive body weight loss and muscle cachexia, as well as reduced uncoupling protein 1 (UCP1) expression in brown adipose tissue (BAT), but increased browning of white adipose tissue (WAT). Increased housing temperature reverses not only the hyperactivity and weight loss of animals exposed to the ABA model, but also hypothermia and loss of body and muscle mass. Notably, despite the major metabolic impact of ABA, none of the changes observed are associated to changes in key hypothalamic pathways modulating energy metabolism, such as AMP-activated protein kinase (AMPK) or endoplasmic reticulum (ER) stress. Overall, this evidence indicates that although temperature control may account for an improvement of AN, key hypothalamic pathways regulating thermogenesis, such as AMPK and ER stress, are unlikely involved in later stages of the pathophysiology of this devastating disease.


Assuntos
Proteínas Quinases Ativadas por AMP/metabolismo , Tecido Adiposo Marrom/patologia , Tecido Adiposo Branco/patologia , Anorexia/fisiopatologia , Hipotálamo/patologia , Termogênese , Proteína Desacopladora 1/metabolismo , Proteínas Quinases Ativadas por AMP/genética , Tecido Adiposo Marrom/metabolismo , Tecido Adiposo Branco/metabolismo , Animais , Peso Corporal , Metabolismo Energético , Homeostase , Hipotálamo/metabolismo , Ratos , Ratos Sprague-Dawley , Proteína Desacopladora 1/genética
10.
Cell Metab ; 32(6): 951-966.e8, 2020 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-33080217

RESUMO

Childhood obesity, especially in girls, is frequently bound to earlier puberty, which is linked to higher disease burden later in life. The mechanisms underlying this association remain elusive. Here we show that brain ceramides participate in the control of female puberty and contribute to its alteration in early-onset obesity in rats. Postnatal overweight caused earlier puberty and increased hypothalamic ceramide content, while pharmacological activation of ceramide synthesis mimicked the pubertal advancement caused by obesity, specifically in females. Conversely, central blockade of de novo ceramide synthesis delayed puberty and prevented the effects of the puberty-activating signal, kisspeptin. This phenomenon seemingly involves a circuit encompassing the paraventricular nucleus (PVN) and ovarian sympathetic innervation. Early-onset obesity enhanced PVN expression of SPTLC1, a key enzyme for ceramide synthesis, and advanced the maturation of the ovarian noradrenergic system. In turn, obesity-induced pubertal precocity was reversed by virogenetic suppression of SPTLC1 in the PVN. Our data unveil a pathway, linking kisspeptin, PVN ceramides, and sympathetic ovarian innervation, as key for obesity-induced pubertal precocity.


Assuntos
Ceramidas/metabolismo , Hipotálamo/metabolismo , Kisspeptinas/metabolismo , Ovário/metabolismo , Obesidade Infantil , Puberdade Precoce , Animais , Feminino , Masculino , Obesidade Infantil/complicações , Obesidade Infantil/metabolismo , Puberdade Precoce/etiologia , Puberdade Precoce/metabolismo , Ratos Wistar
11.
Neuroendocrinology ; 110(11-12): 1042-1054, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-31945763

RESUMO

Linaclotide is a synthetic peptide approved by the FDA for the treatment of constipation-predominant irritable bowel syndrome and chronic constipation. Linaclotide binds and activates the transmembrane receptor guanylate cyclase 2C (Gucy2c). Uroguanylin (UGN) is a 16 amino acid peptide that is mainly secreted by enterochromaffin cells in the duodenum and proximal small intestine. UGN is the endogenous ligand of Gucy2c and decreases body weight in diet-induced obese (DIO) mice via the activation of the thermogenic program in brown adipose tissue. Therefore, we wanted to evaluate whether oral linaclotide could also improve DIO mice metabolic phenotype. In this study, we have demonstrated that DIO mice orally treated with linaclotide exhibited a significant reduction of body weight without modifying food intake. Linaclotide exerts its actions through the central nervous system, and more specifically, via Gucy2c receptors located in the mediobasal hypothalamus, leading to the activation of the sympathetic nervous system to trigger the thermogenic activity of brown fat stimulating energy expenditure. These findings indicate for first time that, in addition to its effects at intestinal level to treat irritable bowel syndrome with constipation and chronic constipation, linaclotide also exerts a beneficial effect in whole body metabolism.


Assuntos
Tecido Adiposo Marrom/efeitos dos fármacos , Peso Corporal/efeitos dos fármacos , Ingestão de Alimentos/efeitos dos fármacos , Agonistas da Guanilil Ciclase C/farmacologia , Hipotálamo/efeitos dos fármacos , Obesidade/tratamento farmacológico , Peptídeos/farmacologia , Receptores de Enterotoxina/efeitos dos fármacos , Termogênese/efeitos dos fármacos , Animais , Comportamento Animal/efeitos dos fármacos , Dieta Hiperlipídica , Masculino , Camundongos , Camundongos Endogâmicos C57BL
12.
J Physiol Biochem ; 76(2): 193-211, 2020 May.
Artigo em Inglês | MEDLINE | ID: mdl-31845114

RESUMO

The hypothalamus is a brain region in charge of many vital functions. Among them, BAT thermogenesis represents an essential physiological function to maintain body temperature. In the metabolic context, it has now been established that energy expenditure attributed to BAT function can contribute to the energy balance in a substantial extent. Thus, therapeutic interest in this regard has increased in the last years and some studies have shown that BAT function in humans can make a real contribution to improve diabetes and obesity-associated diseases. Nevertheless, how the hypothalamus controls BAT activity is still not fully understood. Despite the fact that much has been known about the mechanisms that regulate BAT activity in recent years, and that the central regulation of thermogenesis offers a very promising target, many questions remain still unsolved. Among them, the possible human application of knowledge obtained from rodent studies, and drug administration strategies able to specifically target the hypothalamus. Here, we review the current knowledge of homeostatic regulation of BAT, including the molecular insights of brown adipocytes, its central control, and its implication in the development of obesity.


Assuntos
Adipócitos Marrons/metabolismo , Hipotálamo/metabolismo , Obesidade/metabolismo , Termogênese , Adipócitos Marrons/citologia , Animais , Metabolismo Energético , Humanos
13.
Nat Metab ; 1(8): 811-829, 2019 08.
Artigo em Inglês | MEDLINE | ID: mdl-31579887

RESUMO

Dopamine signaling is a crucial part of the brain reward system and can affect feeding behavior. Dopamine receptors are also expressed in the hypothalamus, which is known to control energy metabolism in peripheral tissues. Here we show that pharmacological or chemogenetic stimulation of dopamine receptor 2 (D2R) expressing cells in the lateral hypothalamic area (LHA) and the zona incerta (ZI) decreases body weight and stimulates brown fat activity in rodents in a feeding-independent manner. LHA/ZI D2R stimulation requires an intact sympathetic nervous system and orexin system to exert its action and involves inhibition of PI3K in the LHA/ZI. We further demonstrate that, as early as 3 months after onset of treatment, patients treated with the D2R agonist cabergoline experience an increase in energy expenditure that persists for one year, leading to total body weight and fat loss through a prolactin-independent mechanism. Our results may provide a mechanistic explanation for how clinically used D2R agonists act in the CNS to regulate energy balance.


Assuntos
Tecido Adiposo Marrom/metabolismo , Dopamina/metabolismo , Hipotálamo/metabolismo , Transdução de Sinais , Termogênese/fisiologia , Animais , Bromocriptina/administração & dosagem , Bromocriptina/farmacologia , Feminino , Humanos , Hipotálamo/efeitos dos fármacos , Injeções Intraventriculares , Masculino , Ratos
14.
Diabetes ; 68(12): 2210-2222, 2019 12.
Artigo em Inglês | MEDLINE | ID: mdl-31530579

RESUMO

Melanin-concentrating hormone (MCH) is an important regulator of food intake, glucose metabolism, and adiposity. However, the mechanisms mediating these actions remain largely unknown. We used pharmacological and genetic approaches to show that the sirtuin 1 (SIRT1)/FoxO1 signaling pathway in the hypothalamic arcuate nucleus (ARC) mediates MCH-induced feeding, adiposity, and glucose intolerance. MCH reduces proopiomelanocortin (POMC) neuronal activity, and the SIRT1/FoxO1 pathway regulates the inhibitory effect of MCH on POMC expression. Remarkably, the metabolic actions of MCH are compromised in mice lacking SIRT1 specifically in POMC neurons. Of note, the actions of MCH are independent of agouti-related peptide (AgRP) neurons because inhibition of γ-aminobutyric acid receptor in the ARC did not prevent the orexigenic action of MCH, and the hypophagic effect of MCH silencing was maintained after chemogenetic stimulation of AgRP neurons. Central SIRT1 is required for MCH-induced weight gain through its actions on the sympathetic nervous system. The central MCH knockdown causes hypophagia and weight loss in diet-induced obese wild-type mice; however, these effects were abolished in mice overexpressing SIRT1 fed a high-fat diet. These data reveal the neuronal basis for the effects of MCH on food intake, body weight, and glucose metabolism and highlight the relevance of SIRT1/FoxO1 pathway in obesity.


Assuntos
Adiposidade/efeitos dos fármacos , Proteína Forkhead Box O1/metabolismo , Intolerância à Glucose/metabolismo , Hiperfagia/metabolismo , Hormônios Hipotalâmicos/farmacologia , Melaninas/farmacologia , Neurônios/efeitos dos fármacos , Hormônios Hipofisários/farmacologia , Pró-Opiomelanocortina/metabolismo , Sirtuína 1/metabolismo , Adiposidade/fisiologia , Animais , Proteína Forkhead Box O1/genética , Intolerância à Glucose/genética , Hiperfagia/genética , Hipotálamo/efeitos dos fármacos , Hipotálamo/metabolismo , Masculino , Camundongos , Camundongos Knockout , Neurônios/metabolismo , Técnicas de Patch-Clamp , Ratos Sprague-Dawley , Sirtuína 1/genética
15.
Nat Commun ; 10(1): 4037, 2019 09 06.
Artigo em Inglês | MEDLINE | ID: mdl-31492869

RESUMO

Increased body weight is a major factor that interferes with smoking cessation. Nicotine, the main bioactive compound in tobacco, has been demonstrated to have an impact on energy balance, since it affects both feeding and energy expenditure at the central level. Among the central actions of nicotine on body weight, much attention has been focused on its effect on brown adipose tissue (BAT) thermogenesis, though its effect on browning of white adipose tissue (WAT) is unclear. Here, we show that nicotine induces the browning of WAT through a central mechanism and that this effect is dependent on the κ opioid receptor (KOR), specifically in the lateral hypothalamic area (LHA). Consistent with these findings, smokers show higher levels of uncoupling protein 1 (UCP1) expression in WAT, which correlates with smoking status. These data demonstrate that central nicotine-induced modulation of WAT browning may be a target against human obesity.


Assuntos
Tecido Adiposo Marrom/efeitos dos fármacos , Hipotálamo/efeitos dos fármacos , Nicotina/farmacologia , Receptores Opioides kappa/metabolismo , Termogênese/efeitos dos fármacos , Tecido Adiposo Marrom/metabolismo , Tecido Adiposo Branco/efeitos dos fármacos , Tecido Adiposo Branco/metabolismo , Adulto , Animais , Peso Corporal/efeitos dos fármacos , Feminino , Estimulantes Ganglionares/administração & dosagem , Estimulantes Ganglionares/farmacologia , Humanos , Hipotálamo/metabolismo , Masculino , Camundongos Knockout , Pessoa de Meia-Idade , Nicotina/administração & dosagem , Ratos Sprague-Dawley , Receptores Opioides kappa/genética , Proteína Desacopladora 1/metabolismo
16.
Nutrients ; 11(4)2019 Mar 30.
Artigo em Inglês | MEDLINE | ID: mdl-30935076

RESUMO

The gastrointestinal-brain axis is a key mediator of the body weight and energy homeostasis regulation. Uroguanylin (UGN) has been recently proposed to be a part of this gut-brain axis regulating food intake, body weight and energy expenditure. Expression of UGN is regulated by the nutritional status and dependent on leptin levels. However, the exact molecular mechanisms underlying this UGN-leptin metabolic regulation at a hypothalamic level still remains unclear. Using leptin resistant diet-induced obese (DIO) mice, we aimed to determine whether UGN could improve hypothalamic leptin sensitivity. The present work demonstrates that the central co-administration of UGN and leptin potentiates leptin's ability to decrease the food intake and body weight in DIO mice, and that UGN activates the hypothalamic signal transducer and activator of transcription 3 (STAT3) and phosphatidylinositide 3-kinases (PI3K) pathways. At a functional level, the blockade of PI3K, but not STAT3, blunted UGN-mediated leptin responsiveness in DIO mice. Overall, these findings indicate that UGN improves leptin sensitivity in DIO mice.


Assuntos
Ingestão de Alimentos/efeitos dos fármacos , Leptina/metabolismo , Peptídeos Natriuréticos/metabolismo , Obesidade/metabolismo , Transdução de Sinais/efeitos dos fármacos , Animais , Dieta/efeitos adversos , Hipotálamo/metabolismo , Camundongos , Camundongos Obesos , Obesidade/etiologia , Fosfatidilinositol 3-Quinase/metabolismo , Fator de Transcrição STAT3/metabolismo
17.
Cell Rep ; 25(2): 413-423.e5, 2018 10 09.
Artigo em Inglês | MEDLINE | ID: mdl-30304681

RESUMO

Compelling evidence has shown that, besides its putative effect on the regulation of the gonadal axis, estradiol (E2) exerts a dichotomic effect on the hypothalamus to regulate food intake and energy expenditure. The anorectic effect of E2 is mainly mediated by its action on the arcuate nucleus (ARC), whereas its effects on brown adipose tissue (BAT) thermogenesis occur in the ventromedial nucleus (VMH). Here, we demonstrate that central E2 decreases hypothalamic ceramide levels and endoplasmic reticulum (ER) stress. Pharmacological or genetic blockade of ceramide synthesis and amelioration of ER stress selectively occurring in the VMH recapitulate the effect of E2, leading to increased BAT thermogenesis, weight loss, and metabolic improvement. These findings demonstrate that E2 regulation of ceramide-induced hypothalamic lipotoxicity and ER stress is an important determinant of energy balance, suggesting that dysregulation of this mechanism may underlie some changes in energy homeostasis seen in females.


Assuntos
Tecido Adiposo Marrom/fisiologia , Ceramidas/toxicidade , Estresse do Retículo Endoplasmático/efeitos dos fármacos , Metabolismo Energético/efeitos dos fármacos , Estradiol/farmacologia , Hipotálamo/fisiologia , Termogênese/efeitos dos fármacos , Tecido Adiposo Marrom/efeitos dos fármacos , Animais , Estrogênios/farmacologia , Feminino , Homeostase , Hipotálamo/efeitos dos fármacos , Ratos
18.
Metabolism ; 87: 87-97, 2018 10.
Artigo em Inglês | MEDLINE | ID: mdl-30075164

RESUMO

BACKGROUND: RF-amide-related peptide-3 (RFRP-3), the mammalian ortholog of gonadotropin-inhibiting hormone, operates as inhibitory signal for the reproductive axis. Recently, RFRP-3 has been also suggested to stimulate feeding, and therefore might contribute to the control of body weight and its alterations. Yet, characterization of the metabolic actions of RFRP-3 has been so far superficial and mostly pharmacological. Here, we aim to investigate the physiological roles of RFRP-3 signaling in the control of feeding and metabolic homeostasis using a novel mouse model of genetic ablation of its canonical receptor, NPFF1R. METHODS: Food intake, body weight gain and composition, and key metabolic parameters, including glucose tolerance and insulin sensitivity, were monitored in mice with constitutive inactivation of NPFF1R. RESULTS: Congenital elimination of NPFF1R in male mice resulted in changes in feeding patterns, with a decrease in spontaneous food intake and altered responses to leptin and ghrelin: leptin-induced feeding suppression was exaggerated in NPFF1R null mice, whereas orexigenic responses to ghrelin were partially blunted. Concordant with this pro-anorectic phenotype, hypothalamic expression of Pomc was increased in NPFF1R null mice. In contrast, spontaneous feeding and neuropeptide expression remained unaltered in NPFF1R KO female mice. Despite propensity for reduced feeding, ablation of NPFF1R signaling in male mice did not cause overt alterations in body weight (BW) gain or composition, neither it affected BW responses to high fat diet (HFD), total energy expenditure or RQ ratios. Yet, NPFF1R KO males showed a decrease in locomotor activity. Conversely, NPFF1R null female mice tended to be heavier and displayed exaggerated BW increases in response to obesogenic insults, such as HFD or ovariectomy. These were associated to increased fat mass, decreased total energy expenditure in HFD, and unaltered RQ ratios or spontaneous locomotor activity. Finally, lack of NPFF1R signaling worsened the metabolic impact of HFD on glycemic homeostasis in males, as revealed by impaired glucose tolerance and insulin sensitivity, while female mice remained unaffected. CONCLUSION: Our data support a discernible orexigenic role of NPFF1R signaling selectively in males, which might modulate the effects of leptin and ghrelin on food intake. In addition, our study is the first to disclose the sex-biased, deleterious impact of the lack of NPFF1R signaling on body weight and fat composition, energy expenditure, locomotor activity and glucose balance, which exaggerates some of the metabolic consequences of concurrent obesogenic insults, such as HFD, in a sexually dimorphic manner. SUMMARY OF TRANSLATIONAL RELEVANCE: Our data are the first to document the nature and magnitude of the regulatory actions of RFRP-3/NPFF1R signaling in the control of feeding and metabolic homeostasis in a physiological setting. Our results not only suggest an orexigenic action of endogenous RFRP-3, specifically in males, but reveal also the detrimental impact of ablation of NPFF1R signaling on body composition, energy expenditure, locomotor activity or glucose balance, especially when concurrent with other obesogenic insults, as HFD, thereby providing the first evidence for additional metabolic effects of RFRP-3, other that the mere control of feeding. Interestingly, alterations of such key metabolic parameters occurred in a sex-biased manner, with males being more sensitive to deregulation of locomotor activity and glycemic control, while females displayed clearer obesogenic responses and deregulated energy expenditure. While our study cannot discard the possibility of RFRP-3 actions via alternative pathways, such as NPFF2R, our data pave the way for future analyses addressing the eventual contribution of altered RFRP-3/NPFF1R signaling in the development of metabolic alterations (including obesity and its comorbidities), especially in conditions associated to reproductive dysfunction.


Assuntos
Ingestão de Alimentos/genética , Ingestão de Alimentos/fisiologia , Neuropeptídeos/metabolismo , Receptores de Neuropeptídeos/genética , Receptores de Neuropeptídeos/fisiologia , Animais , Composição Corporal/genética , Dieta Hiperlipídica , Metabolismo Energético/genética , Grelina/farmacologia , Intolerância à Glucose/genética , Homeostase , Hipotálamo/metabolismo , Resistência à Insulina/genética , Leptina/farmacologia , Masculino , Camundongos , Camundongos Knockout , Caracteres Sexuais , Aumento de Peso/genética
19.
Nat Commun ; 9(1): 3432, 2018 08 24.
Artigo em Inglês | MEDLINE | ID: mdl-30143607

RESUMO

p53 is a well-known tumor suppressor that has emerged as an important player in energy balance. However, its metabolic role in the hypothalamus remains unknown. Herein, we show that mice lacking p53 in agouti-related peptide (AgRP), but not proopiomelanocortin (POMC) or steroidogenic factor-1 (SF1) neurons, are more prone to develop diet-induced obesity and show reduced brown adipose tissue (BAT) thermogenic activity. AgRP-specific ablation of p53 resulted in increased hypothalamic c-Jun N-terminal kinase (JNK) activity before the mice developed obesity, and central inhibition of JNK reversed the obese phenotype of these mice. The overexpression of p53 in the ARC or specifically in AgRP neurons of obese mice decreased body weight and stimulated BAT thermogenesis, resulting in body weight loss. Finally, p53 in AgRP neurons regulates the ghrelin-induced food intake and body weight. Overall, our findings provide evidence that p53 in AgRP neurons is required for normal adaptations against diet-induced obesity.


Assuntos
Dieta/efeitos adversos , Proteína Quinase 8 Ativada por Mitógeno/metabolismo , Obesidade/etiologia , Obesidade/metabolismo , Proteína Supressora de Tumor p53/metabolismo , Tecido Adiposo Marrom/metabolismo , Proteína Relacionada com Agouti/metabolismo , Animais , Hipotálamo/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Proteína Quinase 8 Ativada por Mitógeno/genética , Neurônios/metabolismo , Pró-Opiomelanocortina/metabolismo , Ratos Sprague-Dawley , Fator Esteroidogênico 1/metabolismo , Proteína Supressora de Tumor p53/genética
20.
Cell Metab ; 26(1): 212-229.e12, 2017 Jul 05.
Artigo em Inglês | MEDLINE | ID: mdl-28683288

RESUMO

Thyroid hormones (THs) act in the brain to modulate energy balance. We show that central triiodothyronine (T3) regulates de novo lipogenesis in liver and lipid oxidation in brown adipose tissue (BAT) through the parasympathetic (PSNS) and sympathetic nervous system (SNS), respectively. Central T3 promotes hepatic lipogenesis with parallel stimulation of the thermogenic program in BAT. The action of T3 depends on AMP-activated protein kinase (AMPK)-induced regulation of two signaling pathways in the ventromedial nucleus of the hypothalamus (VMH): decreased ceramide-induced endoplasmic reticulum (ER) stress, which promotes BAT thermogenesis, and increased c-Jun N-terminal kinase (JNK) activation, which controls hepatic lipid metabolism. Of note, ablation of AMPKα1 in steroidogenic factor 1 (SF1) neurons of the VMH fully recapitulated the effect of central T3, pointing to this population in mediating the effect of central THs on metabolism. Overall, these findings uncover the underlying pathways through which central T3 modulates peripheral metabolism.


Assuntos
Metabolismo Energético , Hipotálamo/metabolismo , Proteína Quinase 8 Ativada por Mitógeno/metabolismo , Transdução de Sinais , Hormônios Tireóideos/metabolismo , Tecido Adiposo Marrom/metabolismo , Animais , Metabolismo dos Lipídeos , Fígado/metabolismo , Masculino , Camundongos Endogâmicos C57BL , Ratos , Ratos Sprague-Dawley , Termogênese , Tri-Iodotironina/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA