Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Mol Phylogenet Evol ; 195: 108071, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38579933

RESUMO

Phylogenomic analysis based on nucleotide sequences of 398 nuclear gene loci for 67 representatives of the leafhopper genus Neoaliturus yielded well-resolved estimates of relationships among species of the genus. Subgenus Neoaliturus (Neoaliturus) is consistently paraphyletic with respect to Neoaliturus (Circulifer). The analysis revealed the presence of at least ten genetically divergent clades among specimens consistent with the previous morphology-based definition of the leafhopper genus "Circulifer" which includes three previously recognized "species complexes." Specimens of the American beet leafhopper, N. tenellus (Baker), collected from the southwestern USA consistently group with one of these clades, comprising specimens from the eastern Mediterranean. Some of the remaining lineages are consistent with ecological differences previously observed among eastern Mediterranean populations and suggest that N. tenellus, as previously defined, comprises multiple monophyletic species, distinguishable by slight morphological differences.


Assuntos
Beta vulgaris , Peixes-Gato , Hemípteros , Animais , Filogenia , Hemípteros/genética
2.
Sci Rep ; 9(1): 1202, 2019 02 04.
Artigo em Inglês | MEDLINE | ID: mdl-30718743

RESUMO

The tea green leafhopper, Empoasca (Matsumurasca) onukii Matsuda, is one of the dominant pests in major tea production regions of East Asia. Recent morphological studies have revealed variation in the male genitalic structures within and among populations. However, the genetic structure of this pest remains poorly understood. This study explores the genetic diversity and population structure of this pest in nineteen populations from the four main Chinese tea production areas using microsatellite markers, with one Japanese population also examined. The results show low to moderate levels of genetic differentiation with populations grouped into four clusters, i.e. the Jiangbei group, the Southwest group 1, the Southwest group 2 and the South China group. Populations from China have a close phylogenetic relationship but show significant isolation by distance. Lower genetic diversity and genetic differentiation of E. (M.) onukii were found in the Kagoshima population of Japan. Evidence for genetic bottlenecks was detected in the South China and Jiangnan populations. Population expansion was found in the Southwest, Jiangbei and Kagoshima populations. This is the most extensive study of the population genetics of this species and contributes to our understanding of its origin and evolutionary history.


Assuntos
Genética Populacional/métodos , Hemípteros/genética , Hemípteros/metabolismo , Animais , China , Deriva Genética , Variação Genética , Repetições de Microssatélites/genética , Filogenia , Chá
3.
BMC Genet ; 17(1): 112, 2016 07 29.
Artigo em Inglês | MEDLINE | ID: mdl-27473717

RESUMO

BACKGROUND: Tea green leafhopper is one of the most dominant pests in Chinese tea plantations. Recent evidence, including morphological and molecular data, revealed that tea green leafhopper in China is the same species as in Japan, Empoasca (Matsumurasca) onukii Matsuda. Previous morphological study that revealed variation in the structure of the male genitalia within and among populations of this species suggested that there may be significant population-level genetic variation. To provide powerful molecular markers to explore the population genetic diversity and population genetic structure of this pest in China, microsatellite markers were obtained by AFLP of sequences containing repeats (FIASCO). RESULTS: Eighteen polymorphic markers were evaluated for five populations of E. (M.) onukii, Two related empoascine leafhopper species were selected to test the transferability of the markers. Population genetic structure of E. (M.) onukii was detected using Structure analysis, principal coordinate analysis (PCoA) and variance analysis. The identified markers were polymorphic with total number of alleles ranging from 6 to 24 per locus, observed and expected heterozygosity ranged from 0.133 to 0.9 and 0.183 to 0.926, respectively, and the polymorphic information content value over all populations varied from 0.429 to 0.911. CONCLUSIONS: This is the first study to demonstrate that microsatellite markers provide valuable information for genetic structure of E. (M.) onukii in Chinese tea plantations. There is obvious genetic differentiation between the two populations in the Southwest tea area. These microsatellite markers will be the powerful tools for genetic studies of E. (M.) onukii and improve understanding of the microevolution of this species.


Assuntos
Hemípteros/genética , Hemípteros/fisiologia , Repetições de Microssatélites/genética , Chá/crescimento & desenvolvimento , Animais , Polimorfismo Genético
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA